
IL2L'. 

i 

T:^ l^ 

L /. ^ <o 

I2c r^ 

Therm , 
Advanced 
Research, Inc. 100    HUDSON    CIRCLE        •        ITHACA,    NEW    YORK 

m^Mi E 

4 



BLANK PAGES 
IN THIS 
DOCUMENT 
WERE NOT 
FILMED 



ON THE HYDRODYNAMIC THEORY 
OF WATER-EXIT AND -ENTRY 

by 

John P. Koran 

TAR-TR 6501 March 1965 

Submitted to 

Fluid Dynamics Branch 
Office of Naval Research 

In Partial Fulfillment of Contract Nonr-4438(00) 

Approved: 

ÖL. QjG> 
A. Ritter 
President 



FOREWORD 

Since January 1961, personnel of Therm Advanced Research 

have carried out research on the hydrodynamics of water-exit 

and -entry under sponsorship of the Flui'. Dynamics Branch of 

the Office of Naval Research. This report is intended to 

summarize those studies and to show how they complement pre- 

vious results. Beyond this, it reviews the present state of 

tne art of predicting the hydrodynamic loads on a body crossing 

a water surface, and suggests directions for fut .ire research on 

this still-unsolved problem. 

The report has benefitted greatly from the editorial com- 

ments of G. R. Hough and A. Fitter. The author is also pleased 

to acknowledge the advice and encouragement of tho,3e who guided 

the research which is summarized herein, namely D. E. Ordway, 

W. R. Sears, and H. S. Tan. 

Reproduction in whole or in part is permitted for any 

purpose of the United States Government. 
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ABSTRACT 

The mathematical theory of water-exit and -entry is 

critically reviewed. A detailed examination of each of the 

principal methods of analysis available shows that none of 

them yields even a uniformly valid approximation to the solu- 

tion during surface crossing. It is concluded that, due to 

mathematical difficulties inherent in the problem, the best 

hope for obtaining a reliable estimate of the loads felt in 

crossing lies with a numerical analysis. Specific recommen- 

dations are made as to the formulation of practical numerical 

methods. 
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PRINCIPAL NOMENCLATURE 

"half-width of plate used in flat-plate fitting 
technique 

c sound speed in water 

F force on body 

g acceleration due to gravity 

h penetration below undisturbed free surface of 
lowest point of body 

I body length or other pertinent dimension 

m added mass 

n_ unit vector normal to boundary surface; directed 
into fluid 

p pressure 

p pressure on free surface 

£ fluid velocity 

R(x*) radius or half-width of body 

s(x*) body cross-sectional area 

t time 

U body speed 



u,v      components of fluid velocity in x and r 
directions, respectively 

w(z)     complex potential 

X(r*)    displacement of body surface above lowest point 
of body 

x,r      space-fixed cylindrical or Cartesian coordinates 

x*,r*    body-fixed cylindrical or Cartesian coordinates 

z       complex position in two-dimensional problems 

ß       deadrise angle of wedge or cone; angle between 
generators and horizontal 

A(r,h)   displacement of free surface above undisturbed 
position 

6        density ratio across free surface;  p /p 

p        fluid density 

p , p~    density above and below free surface, respectively 

0       velocity potential 

0 »0"    potential above and below free surface, 
respectively 

body thickness ratio; maximum diameter or width 
over length 

vi 



ON THE HYDRODYNAMIC THEORY OF WATER-EXIT AND -ENTRY 

INTRODUCTION 

The original motivation for studies of water-exit and 

-entry was the need to estimate the impact loads felt in sea- 

plane landings. During world War II, the use of airborne 

torpedoes further stimulated interest in water-entry problems. 

Still more recently, the desire to operate ships at higher 

speeds and in rougher seas has introduced the ship-slamming 

problem to hydrodynamicists, while the advent of underwater- 

launched missiles has made the water-exit problem of equal 

interest. 

Such problems have attracted quite a number of investi- 

gators, whose contributions are widely scattered through the 

literature and subliterature. Fortunately for current workers 

in these areas, water-entry theory has been the subject of two 

fairly recent reviews. Szebehley's (1959) is almost completely 

nonmathematical, but gives an extonsive list of references to 

both theory and experiment. Chu & Abramson (1959) go into some 

of the details of the main theories, and make some interesting 

comparisons between theory and experiment. 

The present report is also intended to review critically 

the available theories of water-entry and -exit.  Like our 

predecessors, our main purpose is to suggest directions for 

future work. Here, however, considerably more attention is 

.. '•■''■■ "• 



given to the mathematical details of the various theories, 

and considerably less to the experimental literature.  It is 

not that we distrust the experimental results, although, to 

be sure, the transient nature of the subject phenomena makes 

it difficult to obtain reliable data. Rather, it is oecause 

our greater emphasis on the mathematics exposes the inadequa- 

cies of the available theories in itself, so that detailed 

comparison with experiments is unnecessary. Our approach has 

the added advantage of preventing us from accepting an erron- 

eous theory which, fortuitously, happens to agree with some 

experimental data. 

In Chapter One, the assumptions usually invoked in analy- 

ses of water-exit and -entry are stated, their physical and 

mathematical significance explained, and some immediate conse- 

quences noted. Attempts to solve the problem formulated in 

Chapter One are classified, described, criticized, and compared 

in Chapter Two, while the effects of some of the factors 

neglected in the "conventional" formulation are discussed in 

Chapter Three. This is followed by a Sximmary and conclusions 

section, which contains suggestions for future research. 



CHAPTER ONE 

FORMULATION AND GENERAL RESULTS 

This initial chapter is concerned with the mathematical 

formulation of a "typical" surface-crossing problem. The 

physical and mathematical significance of the assumptions in- 

troduced ia explained in d2tail, as are the role of the added- 

mass concept in computing the hydrodynamic forces acting on 

the body and the direct relation between entry and exit prob- 

lems which follows from the reversibility of the flow. 

1.1 Scope, Coordinates, and Nomenclature 

As indicated in the Introduction, a number of physical 

situations qualify as water-exit or -entry problems. For sim- 

plicity, we shall confine most of our formal considerations to 

a limited class of surface-crossing problems, which, however, 

exl ibits most of the mathematical difficulties of the general 

problem. 

Specifically, we define our basic physical situation to 

be that depicted in Fig. 1 . A body of revolution or a sym- 

metric two-dimensional airfoil is in vertical constant-speed 

axial motion into a fluid otherwise at rest. The liuid is 

bounded above by a nearly horizontal surface, which Is free to 

distort under the influence of the body's motion. 



'JVc 3ets of coordinates shall be employed.  The space- 

fixed (x,r) system has origin at the undisturbed position of 

the free surface, while the body-fixed (x*,r*) system has 

origin at the body nose.  In three-dimensional cases, both 

systems are cylindrical, while in plane situations they are 

Cartesian. 

The two systems are connected by 

x*=x+h,r*=r (l) 

where h  is the displacement below the undisturbed free sur- 

face (the depth of submergence) of the lower end of the body. 

As is convenient, we shall use h as our time variable.  In 

terms of h , the time derivative is 

i-=u4 (2) 

where U  is the body speed, defined posicive downward. 

In these coordinates, the f^ee surface is located at 

x = A(r,h)  and the body surface at r* - R(x*)  or x* = X(r*) 

1.2  Assumptions 

To simplify the mathematical problem of determining the 

flow about the body, most (but not all) previous investigators 

have conducted their studies under the following assumptions. 



4 x,x* 

R(x») 

FIGURE 1 

COORDINATES AND NOMENCLATURE 
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1. Irrotational flow.  This is justified by the expec- 

tation that viscous effects on the pressure felt by the 

body are generally small, and that the variation in the 

inviscid forces is more important during surface crossing 

than the variation of viscous drag. Frcm this assumption, 

there exists a velocity potential <t>   , which may be re- 

garded as the principal unknown of the problem, since, by 

definition, its gradient yields the velocity £ ; 

£ = V0 (3) 

2. Tncompreasible flow,  since exit and entry speeds 

are usually well below the speed of sound in water, the 

compressibility of the water is usually neglected. Ap- 

plying this assumption to the continuity equation, we 

find that 0     is governed by Laplace's equation, 

v20 = o (4) 

This must be satisfied everywhere in the flow field out- 

side the body, except on the air-water interface, across 

which we anticipate discontinuities in the potential and 

in its derivatives. The pressure p may now be related 

to the potential throagh Bernoulli's equation 

p = p  - pgx - pU0h - 2~ p(V0) (5) 
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Here p  is the pressure on the (undisturbed) free sur- 

face far from the body,  p  is the fluid density,  g is 

the acceleration due to gravity, and the subscripts in- 

dicate partial differentiation. 

3. Zero air density and surface tension.  These factors 

are generally felt to be unimportant.  Their neglect is 

not essential for an analytic solution, but does simplify 

matters somewhat. With these assumptions, only the flow 

in the region below the free surface is of interest, and 

the dynamic free-surface boundary condition is that the 

pressure be constant on the free-surface. The kinematic 

free-surface boundary condition, that the components of 

the fluid velocity and the surface velocity along the nor- 

mal to the free surface be equal, may be written 

U Ahnx - <*>n = 0    on x = A(r,h) (6) 

where n is the unit normal vector directed out of the 

flow field, and n  is its x-component. 

4. Zero gravity (infinite Froude number). The justifi- 

cation and motivation for this assumption are the same as 

for the one preceding.  The dynamic free-surface condition 
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now takes  the  form 

U <t>h + | (V0)2 = 0 on    x = A(r,h) (7) 

5.  No cavitation.  'Aere is no real justification for 

this assumption, except in the initial impact phase of 

entry problems, or in the relatively uninteresting deep 

submergence phase of the motion. The neglect of cavita- 

tion is, in fact, one of the major defects of water-exit 

and -entry theory. Unfortunately, present techniques are 

incapable of coping with two free surfaces in an unsteady- 

flow problem. 

In the absence of cavitation, the only body boundary 

condition to be satisfied is that the flow be tangent to 

the given body surface: 

U n + 0 = 0    on r* = R(x*) (8) x   n v  ' v ' 

To complete the formulation, we need the condition of no 

disturbance far from the body, 

0 -» 0    as [ (x+h) + r ] - oo (9) 

and the condition that the free surface be initially 

4 



undisturbed, 

A = 0        for h<0 (10) 

0 = 0 on x = 0   for h <_ 0 (il) 

The problem may now be stated as the df ermination of the 

potential so as to satisfy Eqs. (4) and (6)-(ll).  Once <t>    is 

known, the pressure distributiou on the body can be calculated 

from Eq. (5).  The net force acting on the body can then be 

found by integrating over the boc  surface pressure distribu- 

tion. 

1.3 The Added-Mass Concept 

An alternative method of computing the force, which is 

much simpler under certain approximations, is the use of added- 

mass concepts, which were first applied to water impact by 

von Karman (1929).  Specifically, letting F  be the hydrody- 

naraic contribution to the upward force on the body, we have 

Fx = ud¥rau <12> 

where m , the added mass, is given by 

m - - § /    * nx do (13) 
7 +T 
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Here 2L  is the wetted portion of the body surface,  Zp is 

the free surface, and n  is the x-component of the unit vec- 

tor normal to the integration surface, directed out of the 

flow field. 

Equation (13) is well-known; see, e.g., Shiffman & Spencer 

(1951) for a derivation from momentum principles.  For complete- 

ness, we present here a derivation in tYi« manner of Landweber & 

Yih (1956), but specialized to the water-entry problem. 

Using Eq. (5), with g = 0 , we integrate over the body- 

surface pressure distribution to obtain the net upward force 

on the body in the form 

Fx = - p J        [u^ + |> (V0)2j nx da (14) 

Here Z_ is the submerged portion of the body surface, and 

Zp the free surface.  Permission to extend the integration 

over 2p follows from the dynamic free-surface boundary con- 

dition (7). 

Defining R,.(t)  as the radius to the intersection of the 

body and the free surface, and assuming for convenience that 

X and A are single-valued functions of r  (what follows 

is easily generalized to the case in which they are not), we 

may -.rite 
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if rI 

2TT   J 0 nx da =   j        0(x(r)-h,r,t)   r dr 

4+2T ° 
00 

+    f 0(A(r,t),r,t)   r dr (15) 
R, 

Then noting    A(RT)  = X(R   )   - h  ,  we  find that 

l?J « nx da =   J ^ nx da -   J 0X nx da 

+ Ah   .     *x  "x  d» (16> 

From equations (6), (8), and (16), we thus obtain 

I    \ nxd" - ar /    «nxd0 - b I    *n *xd0   <17' 
V^F v2» Vs» 
NO'/ define £  as the submeraed portion of the surface 

00 

of a large sphere centered at  (0,0) . As the radius of this 

sphere approaches infinity, 

,2 J   (V0T: nx drj - 0 (18) 

2 
00 

assuming that 0 decays at least as fast as the potential of 

a point source. Then, from Gauss's theorem and equations (3) 

and (18), 
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,2 - - . f M2 
J    (V*)2 nx da = J  gf dT (19) 
SB+2F V 

where V is the volume beneath the free surface and the sub- 

merged portion of the body surface, and g is the fluid velo- 

city.  Using Cartesian tensor notation for convenience, we have 

ä äq.       oq.     f        öqi     dq. , 
^ qj qj - 2  qj g-1 = 2 ,j gj- = 2  q. g- + q. g-I J 

(20) 

where the second equality follows from irrotationality, and 

the third from continuity,  substituting (20) into (19) and 

again using Gauss's theorem and equation (3)/ we get 

J (v0)2 nx da - 2 j        0x 0n da (21) 

Equation (13) then follows from (14), (17), and (21). 

1.4 Relations Between Exit and Entry Problems 

It is of interest to note that, under the above assump- 

tions, the fluid motion under study is reversible.  That is, 

given the shape of the body, its location and orientation with 

respect to the surface, and its speed, the potential and velo- 

city fields appropriate for an entering body differ only in 

sign from those appropriate for an exiting body.  The pressure 

field, and hence the loading on the body, is independent of 

the direction of motion. 

Ij^nr*' ■^r.'1 '»^" <**&B<m% 
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To show this, consider an exit problem in which the speed 

of the body and its orientation in space-fixed coordinates are 

the same as in the basic entry problem.  The formulation of 

§ 1.2 applies equally well to both problems.  Thus the equa- 

tions governing <?> and Ä , the potential and free-surface 

distortion for the exit problem, are obtained by letting  0-»0 , 

A- E  , and U- -|u| in (4) and (6)-(9)# while (10) and 

(11) must be modified to 

A" - 0       as h - * (22) 

$ - 0        on x = 0  as h - Q° (23) 

But, except for these initial conditions, it is found that 

(-$,A)  satisfy the equations which govern the solution  (0,A) 

of the relation entry problem.  This suggests that 

0(x,r,h) = - 0(x,r,h) ,  Ä(r,h) = A(r,h) (24) 

from which the above statements on reversibility would follow 

directly. 

To prove (24), it is sufficient to show that equations 

(10) and (11) can be replaced in the formulation of the entry 

problem by (22) and (23).  While it is clear that the free sur- 

face is undisturbed after the entering body has penetrated in- 

finitely far into the water, it is not so obvious that this 
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condition determines a unique solution.  In the case of finite 

Froude number, in fact, the condition is insufficient, since 

a backward solution of the entry problem could not recover the 

Cauchy-Poisson type of wave motions which are set up during 

breach (Moran 1962b). 

The requisite uniqueness proof has been supplied by Moran 

& Kerney (1964) under the additional assumption that the free 

surface is only slightly disturbed, which they used to set up 

a successive-approximation procedure based on expansion of the 

free-surface boundary conditions in powers of a small parameter 

This small-perturbation assumption is not uniformly valid when 

the body is close to or is broaching the surface. However, it 

does hold far enough from the body, and it does permit iden- 

tification of the irreversibility of finite-Froude-number 

situations.  Thus there is no reason to doubt the reversibil- 

ity even when the expansions made in its derivation fail to 

converge.  While this is somewhat conjectural, practically all 

analyses are conducted under these small-disturbance approxi- 

mations, so that their results, at least, are certainly rever- 

sible. 

Of course- almost any relaxation of the assumptions set 

forth in  1.2 destroys the reversibility.  We have already 

noted this for gravity, while cavitating and viscous flows 

are obviously irreversible.  On the other hand, the inclusion 

of a finite air density does not destroy the reversibility 

(Moran & Kerney 1964). 

V 
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CHAPTER TWO 

"CONVENTIONAL" SOLUTIONS 

In this chapter, we shall survey solutions of exit and 

entry problems conducted under the "conventional" set of as- 

sumptions set forth in § 1.2. As in all problems involving a 

free JUiface, a major obstacle to these solutions is the ne- 

cessity for satisfying nonlinear conditions on a boundary whose 

location is unknown a priori, while the fact that the flow is 

basically unsteady is a further complication.  No sufficiently 

general mathematical procedure for treating such problems exists. 

Thus, all existing analyses of water-exit and -entry either are 

numerical or are bar.ed on an approximate version of the free- 

surface boundary conditions. 

The various approximate methods of solution are reviewed 

in §§ 2.1-2.4, while the numerical results are discussed in § 2.5 

Where possible, the analyses are evaluated against a hypotheti- 

cal exact solution as they are introduced.  A graphical compari- 

son of the predictions of the analyses is given in § 2.6, along 

with a qualitative discussion of the degree to which theory 

agrees with experiment. 

1 Linearization of Free-Surface Boundary Conditions 

The most straightforward approximation to the free-cur- 

face boundary conditions is formally set up as follows.  The 
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terms involving derivatives öf the potential in equations (6) 

and (7) are expanded in Taylor series about x = 0 , the un- 

disturbed position of the free surface.  The potential and all 

its derivatives are assumed to be small and of the same order 

of magnitude in some perturbation parameter, at least near 

the free surface.  Then discarding quadratic terms, we obtain 

0=0 on x = 0 (25) 

UAh = *x(°'
rft) (26) 

In deriving (25),  we have integrated over h and used (11). 

The boundary-value problem for the potential — con- 

sisting of equations (4), (8), (9)# and (25) — is now linear, 

and is decoupled from the initial-value problem for the free- 

surface distortion defined by (10) and (26).  This, of course, 

is an enormous simplification over the exact problem. 

Moreover, time does not appear explicitly in the linear- 

ized boundary conditions on $ , but only implicitly, through 

the time-dependence of the penetration h  (see Fig. 1) of the 

body into the water.  In fact, at any given h , the problem is 

equivalent to one of steady unbounded flow about a body formed 

by reflecting the portion of the body beneath the undisturbed 

free surface about that plane, as shown in Fig. 2.  For, from 

symmetry, the streamlines of the equivalent flow are all normal 



1" 

FIGURE 2 

EQUIVALENCE OF LINEARIZED WATER ENTRY 
WITH PROBLEMS IN UNBOUNDED FLOW 
AT VARIOUS STAGES OF PENETRATION 
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to the x = 0 plane, which is then an equipotential, as required, 

Also, satisfaction of the body boundary condition in the equiva- 

lent problem insures satisfaction of equation (8). 

As is consistent with the linearization, the integration 

over the free surface in calculating the added mass from (13) 

is replaced by an integration over the plane x = 0 . But, since 

0=0 on x = 0 according to the linearized boundary condition 

(25)# this integration does not contribute to m . Moreover, 

in the equivalent unbounded-flow problem, hoth t    and n  are 

antisymmetric about x = 0 . Therefore, the added mass is half 

that of the reflected body studied in the equivalent problem. 

To illustrate, let us consider the vertical symmetric en- 

try of a wedge of deadrise angle 8 , defined as the angle be- 

tween a side of the wedge and the horizontal, as shown in Fig. 

3.  The equivalent unbounded-flow problem, also shown in Fig. 3# 

is the symmetric flow past a diamond or rhombus, or, what is by 

symmetry the same thing, the flow past an Isosceles triangle 

sitting on a half-plane.  The flow region in this l-tst problem 

may be mapped onto the upper half of the £-plane (say) by a 

Schwarz-Christoffel mapping (Mi]ne-Thomson i960), which is given 

in differential form by 

dz _  -1-23A lr2  , Nß/7T-l/2 ,pT . 

where z = x + fr and the constants of the mapping have been 

••-—|#-wr
r- 
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chosen so that the corners of the triangle map onto the points 

- 1, 0, and +1 in the £-plane, as shown in Fig. 3 •  The 

complex potential in the I-plane is simply 

w = UAC (28) 

where the constant has been chosen so that the complex 

velocity dw/dz -♦ U as z ■* « , after noting from (27) that 

, .  dw  1 , .  dw llm  dz" = Ä Jim oT (29) 

To determine A , we integrate (27) fron £ - 0 to 1 , 

noting that 

ZC  B   sin ß e 

= Aei(3-V2) J ,1-23. (1^2)ßA-l/2 de     (30) 

0 

The integral can be found in tables, and we obtain 

A =   7T h fr,'i + !) rji-|| sin 0 ]  ' (31) 
2       7T 7T 

The perturbation velocity potential  is,   from  (28), 

0 = U [A fce C  - x] (32) 

^  »p.     "|f<HC - 
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in which we have adjusted the usual arbitrary constant so that 

0=0 on x = 0  (where I     is pure imaginary).  In principle, 

the velocity and pressure fields may now be computed by integra- 

ting (27) and substituting (32) into (3) and (5).  This task is 

complicated by the fact that the integration of (27) yields z , 

even on the body, as an incomplete beta function of £ .  However, 

it is not difficult to obtain the added mass,  substituting (32) 

into (13), we find 

1 h cot 0 

m = - 2pA /  C || dC - 2p  /       [h -  r tan ß dr 

0 0 

= ?r  ph2{j|+ßj   [r(l   -£)r(l   -f)   sin   ß     ]'*- k cot   ß} 

(33) 

in which we have used (27) and (31) and set 0=0 on the 

free surface. 

The above results were first given by Lewis (1929) and 

Taylor (1930) in connection with the problem of a vibrating ship. 

In analyses directed towards the impact problem, Wagner (1932) 

quoted equation (33) without derivation, while full details of 

a solution differeing only slightly from the present one were 

given by Monaghan (1949) and Karzas (1952). 

Taylor also gave the added mass of a two-dimensional sym- 

metrical lens formed by two circular arcs, which figures into 

the solution for the broadside impact of a circular cylinder. 

This solution was later reproduced by Fabula (1955)- 
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The most elegant example of this method of analysis is 

Shiffman & Spencer's (1945a) study of the water-entry of a 

sphere, which required the solution of the flow about an 

axisymmetric lens (Shiffman & Spencer 1947). The submerged 

phase of the water-exit of a sphere was considered by 

Breslin & Kaplan (1957) and by Woo (1959). However, in 

view of the reversibility noted in § 1.4* these solutions 

only duplicate the submerged portion of Shiffman & Spencer's 

solution. 

The small-perturbation assumption on which all these 

analyses are based is not uniformly vali'' when the body is 

close to or is broaching the surface.  This is easily seen 

from the nature of the equivalent unbounded-flow problem, 

the solution of which is necessarily singular at the sharp 

corner corresponding to the intersection of the body and 

the free surface.  Now we are accustomed to such singulari- 

ties in fluid mechanics; in particular, we may mention the 

leading-edge singularity of thin-airfoil theory, which has 

a mathematical origin similar to that of the problem under 

discussion.  However, in the airfoil problem, the singularity 

is simply an exaggeration or the flow around a thin leading 

edge.  In the entry probleir, the flow near the point at 

which the body contacts the free surface is supposed to be 

parallel to the body surface, so that the singularity of 

the linearized solution there is more fictitious and hence, 
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presumably, more serious. As we shall see, this defect 

is shared by virtually all theories of water-exit and 

-entry, which can, for the most part, be regarded as 

either improved or simplified versions of the basic lin- 

earized theory outlined above, 

2.2 Approximation of Body Boundary Condition 

It is implied in § 2,1 that the body boundary condition 

is to be satisfied exactly. For most body shapes, even in un- 

bounded flow, this is not possible without recourse to com- 

puter programs, such as those devised by Landweber (1951/ 

1959) and by smith & Pierce (1958). Moreover, since the 

free-surface boundary conditions are satisfied only approxi- 

mately, a more exact treatment of the body boundary condition 

is not necessary.  Indeed, it may even be deleterious, since, 

as noted in § 2.1, an exact solution of the equivalent prob- 

lem sketched in Fig. 2 contains spurious singularities at 

the intersection of the body and the undisturbed free surface 

2.2.1 Fitting Techniques 

In entry problems, the body boundary condition is usu- 

ally simplified by approximating the wetted portion of the 

body by some easily analyzed shape. Von Karman (1929), in 

his two-dimensional analysis of seaplane-float impact, 

assumes that the body's penetration into the water is so 
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slight that the body boundary condition can be satisfied 

on the undisturbed free surface x = h .  Thus the flow is 

taken to be that around a flat strip of width equal to the 

beam R(h) of the float at its intersection with the un- 

disturbed free surface, and the body is said to be "fitted" 

with a flat plate. From the discussion of § 2.1, the added 

mass per unit length of the float is then half that of a 

plate of width R(h)  immersed in an unbounded flow directed 

normal to the plate, or 

m(h) = | p R2(h) (34) 

Von Karman's method was extended to the vertical and oblique 

entry of bodies of Jevolution by Plesset (1942), and to three- 

dimensional shapes approximating seaplane floats or keels by 

Yu (1945).  in the former paper, the flow is taken to be that 

around an elliptical disk fitted to the intersection of the 

body with the undisturbed free surface, while the latter uses 

experimental data on rectangular plates impacting on the 

surface. 

Flat-plate fitting ignores the shape of the submerged 

portion of the body.  in their studies of vertical water- 

entry of spheres and conet,, Shiftman & Spencer (1945a, 1951) 

take the added mass to be half that of an ellipsoid of revo- 

lution whose maximum cross-section corresponds with the 

X 
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intersection of the entering body and the undisturbed surface, 

and whose lower extremity coincides with that of the body. 

They also tried fitting the submerged portion of the enterinj 

sphere with another sphere of radius R(h) . Armstrong & 

Dodd (1957) treated cone entry by fitting a circular-arc 

spindle to the cone.  Trilling (1950b) studied oblique entry 

of two- and three-dimensional bodies with ellipsoid fitting, 

while Karzas (1952) and Fabula (1957) used ellipse fitting 

for vertical two-dimensional entry of wedges and circular 

cyl-'nders, respectively.  As they note, in the approximation 

under discussion, ellipse fitting and flat-plate fitting 

give identical results in two dimensions. 

2.2.2 Slender-Body Theory 

The accuracy cf fitting procedures is difficult to assess, 

though it is certain that the precision worsens with increasing 

depth of submergence.  In dynamical studies, where force data 

are required through broach and during the submerged phase of 

the motion, a different approximation to the body boundary con- 

dition is preferred, viz., slender-body theory. 

To fix ideas, consider the vertical water-entry of a 

slender body of revolution. We satisfy the Laplace equation 

automatically by working in terms of its singular fundamental 

solutions; i.e., sources.  In general, such singularities can 

be distributed only on or within the body surface and on or 
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above the free surface.  Symmetry arguments like those of § 2.1 

show that the linearized free-surface boundary condition (25) 

is satisfied if, for each body-bound source, a singularity of 

equal but opposite strength is positioned at its image in 

the undisturbed free surface.  Since, in formal slender-body 

theory, the body-bound sources are confined to the body axis, 

the total singularity system consists of a distribution of 

sources along the axis of motion.  Then, by any one of sev- 

eral techniques familiar from problems in unbounded flow, 

we find that the body-bound source strength is proportional 

to the slupe of the body mass-sectional area distribution 

S(x*) H 7TR (X*) , so that the potential may be written 

0 = - Tg? J s'(e*) ((x*-e*)2 + r*^-*5 d^* — 
J 
0 
i 

+ igp / s'(**) f(x*-2h+e*)2 + r*2)-*5 df*        (35) 
0 

where I     is the body length.  This form is appropriate when 

the body is completely submerged? when it is not, the upper 

limits of the integrals should be h . 

The axial force on the body can be found either from 

added-mass concepts or by direct integration of the body 

surface pressure distribution; no difference in labor is 

involved.  In the case of complete submergence, the result 

is 

Ja  
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g£ iß   f s>») s'K«) d^ (36) 

Applications of slender-body theory to water entry have 

been restricted to the "conical-flow" problems of wedge and 

cone entry. Mackie (1962) studied both cases, including that 

in which the wedge axis is inclined at a small angle to the 

vertical.  He also considers the possibility that the water 

surface is not flzit, but is wedge-shaped. Coombs (1956) 

treated a similar problem, entry of a cone into a cone of 

water, having in mind a "strip theory" of oblique cone entry. 

That is, the pressure distribution along a generator of the 

cone is taken to be the same as that along a cone of the 

same apex angle entering vertically a cone of water whose 

angle differs from that of the cone by the angle between 

the given generator and the undisturbed free surface. 

Fraenkel's (1958b) analysis of vertical cone entry 

(into a flat water surface) differs from the formal slender- 

body theory described here in that he takes into account 

the discontinuDus slope of the reflected body associated 

with linearization of the free-surface boundary conditions. 

Using a technique based on the Fourier-transform approach 

to slender-body theory (Fraenkel 1958a), he obtains a solu- 

tion which satisfies the body boundary condition to a uni- 

formly valid first approximation, which cannot be s^id of 

formal slender-body theory.  However, we again note that 
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exact satisfaction of the body boundary condition at the in- 

tersection of the body and the free surface may increase the 

degree to which the free-surface boundary conditions are 

violated in the aame region. Thus Fraenkel's modified 

slender-body theory is not necessarily more accurate in 

predicting loads than the more formal theory, though it is 

certainly more satisfying esthetically. 

These applications of slender-body theory to water- 

entry problems do not exploit its virtue of ready applica- 

bility to a wide variety of body shapes.  The first such 

analysis was Breslin's (1958) analysis of vertical symmetric 

water exit. Much of his work, unfortunately not available 

in the unclassified literature*, was reproduced independently 

by Moran (I96I). However, both analyses contain non-integrable 

singularities in the pressure distribution near the stagnation 

points of round-ended bodies of revolution, such as the ellip- 

soid, and so predict the axial force to be infinite during the 

broach phase of the motion. 

For bodies whose ends are parabolic (i.e., blunt with 

finite radius of curvature), Moran (1964b) nhcwed that this 

anomaly can be eliminated by terminating the source distribu- 

tion at points midway between the ends of the body and their 

* Some preliminary results were reported by Breslin & 
Kaplan (1957). 
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centers of curvature. That is, the integration limits in 

equation (35) are modified as follows: 

0 - 2J~ s'(0) . i - 2  + znf S'U) (37) 

This device makes the theory a valid first approximation near 

the stagnation points when those points are not too close to 

the free surface.  In fact, if the body is completely sub- 

merged, such that the depth of submergence h-£ is large 

2 
compared to T I  ,  where T is the body thickness ratio, 

equations (35) and (37) yield a uniformly valid approxima- 

tion to the flow field, provided sufficient restrictions 

are imposed on the body shape to insure the applicability 

of the line-source-distiibution technique.  Specifically, 

to a first approximation, it is sufficient that the firsv 

two derivatives of the cross-sectional area di tribution 

s (x* ) be continuous over the length of the body (Moran 

1963). 

But even when the body shape does not satisfy these 

requirements, so that source rings must be distributed on 

the body surface to get a uniformly valid solution, equa- 

tion (35) is still an accurate approximation in the case 

of "deep" submergence.  In particular, it can be shown 

that the images of the body-bound ring sources can, for 

the purpose of computing the effect of the free surface on 
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the body pressure distribution (and hence for computing 

the net force on the body), be approximated by an axial 

source distribution identical in form with the second term 

in (35). However, regardless of body shape, no way has been 

devised to render slender-body theory uniformly valid when 

the body is only slightly or incompletely submerged. 

Goodman (i960) used alender-body theory to estimate the 

lateral forces and moments felt by a body undergoing small 

pitching motions while in vertical or near-vertical exit. Here 

the body-bound singularities and their images are horizontal 

doublets on the axis of motion.  Since, according to slender- 

body theory, the lateral force at any point on the body is due 

only to the local singularity strength, there is no effect of 

the free surface on the lateral forces and moments while the 

body is completely submerged. Goodman used this fact to de- 

duce fairly simple formulas for the variation of the stability 

derivatives during broach. Martin (i960) has considered oblique 

exit with slender-body theory, but his results are incomplete. 

In closing this section, it may be noted that the slender- 

body approximation may be regarded as a generalization of the 

fitting technique discussed in § 2.2.1. The fitting body is 

the streamline shape generated by the axial singularity distri- 

bution whose strength is taken from slender-body theory. The 

degree of approximation between the shapes of this streamline 

and of the given body is poorest near the intersection of the 
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body with the free surface, but improves with increasing distance 

from the surface. This is illustrated in Fig. 4, which compares 

the actual streamline shape generated by the singularity dis- 

tribution calculated by slender-body theory for the surface 

crossing of a slender ellipsoid of revolution (Moran 19o2a) 

with the shape of the ellipsoid during the broach phase of 

the motion.  Of course, th^ agreement is much better when 

the body is completely submerged. 

2.3 Corrections to Linearized solutions 

2.3-1 The Wetting Correction 

Attempts to improve the accuracy of the simplified analy- 

sis described above date back practically to its conception. 

In particular, Wagner (1932) called attention to the water 

which is "piled up" along the sides of an entering body. 

Intuitively, this could have a substantia1. effect on the im- 

pact force, simply because the wetted area of the body is 

certainly greater than in the linearized picture, and be- 

cause of the substantial density difference between air 

and water. 

Accordingly, Wagner proposed to correct for the piled- 

up water by computing the change in free-surface shape witn a 

linearized theory and then matching u-he heights above the undis- 

turbed free surface of that surface and of the body at their 
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Undisturbed Free Surface 

Actual Body Shape 

Reflected B^dy Shape of 
Exact Linearized Solution 

Streamline Shape Generated 
by Axial Source Distribution 
Derived by Slender-Body Analysis 
of Reflected Body Shape 

FIGURE 4 

STREAiMLINE SHAPES ASSOCIATED 
WITH SURFACE CROSSING OF 
ELLIPSOID OF REVOLUTION 

ACCORDING TO EJIACT LINEARIZED 
THEORY AND SLENDER-BODY THEORY 

lau «**r 
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A(bfh) 

FIGJRF 5 

WAGNER'S FLAT-PLATE FITTING OF 
WEDGE ENTRY WITH WETTING CORRECTION 

point of contact. Since this idea has formed the basis for 

many subsequent analyses, we shall reproduce Wagner's analysis 

here. 

The linearized theory Wagner used to compute the piled- 

up water is the sune as von Karman's (1929) analysis, which 

Wagner apparently deduced independently. Thus the entering body 

is "fitted" with a flat plate which, as shown in Fig. 5# connects 

the two points at which the body contacts the free surface, 

(A(b,h) , +b) . Here b , the half-width of the plate, is a 

function of h to be determined. The potential of the flow 

about such a plate is given in most texts on hydrodynamics; in 

the present nomenclature, 
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r o        o 1 h ' 
<t>  = U  fte i(x - A(b,h) + irr + b  >  - x 

L    L 
(38) 

Using (38) to compute 0  on x = A(b,h) , we apply 

the linearized boundary condition (26) to compute the free- 

surface shape in the form 

A(r,h) Ite ?? 
- 1 MO dc 

for    r > b (39) 

in which 

\(c)   = 
dh (40) 

has been introduced to change the integration variable from h 

to b(h) . Now, by definition (see also Fig. 5) 

X(b) = A(b,h) + h (41) 

while, from (40) 

h = J   \(0 dC (42) 

0 

Thus, letting r -* b in (39) and using (4l) and (42), we ob- 

tain an integral equation for X(b) , 
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b 

x(b) - / *g$ (,3) 

Wagner assumes power series for X(r) and X(b) , 

x(r) = ^ Vn (44) 

n=l 

X(b)- X Bnb
n 

(45) 
n=0 

substitutes (44) and (45) into (43), and, after integrating term 

by term, gets 

n=.l        n=l 

from which the B.'s are easily identified by equating co- 

efficients of like powers of b .  Substituting the results in- 

to (45), Wagner then finds h(b)  from (42). 

For example, ior the case of a wedge with deadrise 

angle ß , the coefficients in (44) are 

A. = tan ß 

A = 0        for n > 1 (47) 

* 
The formula for the general term in the seiies on the right was 
written down by Fabula (1957)- 
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and so, from (46), 

B0 - | tan ß 

B = C for n > 0 (48) 

Then, from (39), (45\ and (H8), 

A(r,h(c)) = § fr sin"1 | - b] tan ß (49' 

while (42) yields, 

b<h) =ltJ-S = lR(h) (5°) 

where R(h)  is the width of the wedge at its intersection with 

the undisturbed free surface. 

As is formally consistent with a linearized theory, 

Wagner neglects the difference between the free surface and the 

equipotential x = A(b,h)  in computing the apparent mass from 

(13), and so arrives at a formula identical in form with von 

Karman's (1929) result, equation (3^): 

JT O 
m(h) = £ p b-(h) (51) 

For the case of a wedge, substitution of (50) into (51) and 

\M- 
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comparison with (3^) shows that Wagner's analysis predicts an 

P 
impact force rr /4 times as great as does von Karman's theory. 

Wagner's treatment of the piled-up water has been widely 

imitated.  Shiftman & Spencer (1945b) employed a similar correc- 

tion in their study of sphere entry, using the flow due to a 

circular disk to approximate the upwash on the free surface in 

computing its rise for the limiting case of zero penetration 

depth.  For deeper penetrations, they determined the "wetting 

factor" — defined as the ratio of the height of the point of 

contact above the lowest point on the body to the depth of pene- 

tration  (x(b)/h  in Fig. 5) — from experiments.  In their 

subsequent study of the vertical entry of a cone, Shiftman & 

Spencer (1951) fitted the wetted portion of the body with half 

an ellipsoid of revolution, and used its upwash in computing 

the wetting factor. 

Xarzas (1952) used the upwash due to a fitted ellipse in 

treating the wedge.  He also suggest*d a second approximation 

to the surface rise, in which the full non-linear boundary 

condition (6) is used, but carried it out only for the case 

of deadrise angle  0 = 45° , in which the difference from 

the result obtained via the linearized boundary condition 

(26) was only about 2%.     Schnitzer and Hathaway (1953) 

applied Wagner's flat-plate fitting to treat the entry 

of an elliptical cylinder, while Fabula (1955) similarly 

studied broadside impact of circular cylinders.  Later (1957) 
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Fabula used ellipse fitting to find the wetting factor for el- 

liptical and circular cylinders and for wedges, the last appli- 

cation being a recapitulation of Karzas's (1952) work. 

Fabula's solution of the integral equation corresponding 

to (43) is, like Wagner's, carried out by power-series expan- 

sion methods.  Chu & Abramson (1959) worked out a numerical method 

for solving the Integral equation derived from the ellipse 

fitting of two-dimensional bodies of arbitrary cross-section, 

using truncated Fourier series. 

Also in his 1957 paper, Fabula computes the water piled 

up in wedge entry using the formally exact linearized upwash 

distribution (that due to £ diamond).  In so doing he corrects 

an error made by Monaghan (19^9) and copied by Bisplinghoff & 

Doherty (1952), who used an incorrect upwash.  Ochi & Bledsoe 

(1962) used ellipse fitting to calculate the upwash and thence 

the wetting factor for certain two-dimensional shapes (Lewis 

forms) which approximate ship hull sections. 

The accuracy of these corrections is, of course, diffi- 

cult to predict.  If the approximating body used to generate 

the upwash distribution is Wagner's flat plate, or the reflected 

body associated with the exact linearized solution, the distri- 

bution contains a spurious singularity at the point of contact 

of the body with the free surface.  Thus, Fabula (191/) claims 

that, even in cases where the integral equation (cf. (43)) formed 

from the free-surface boundary condition (26) using the exact 

Am 
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lineari7c-d upwash may be solved analytically (such as wedge en- 

try), it may be preferable to use the upwash associated with 

ellipse fitting, which at least i3 not singular. 

2.3.2 The F::ee-surface Correction 

A correction of a different sort was proposed by Shift- 

man & spencer (19^5b,1951) •  This "free-surface correction" is 

simply the contribution to the apparent mass of the integral over 

the free surface in equation (13). As in the wetting correction, 

the potential and free-surface shape employed in the calculations 

are those giv^n by a solution of the linearized problem (shift- 

man & Spencer used ellipse fitting in computing thier corrections), 

and approximations are made such that a formal first approximat- 

ion to the ..ntegral is obtained.  Thus the validity of this 

correction is subject to th?  same criticism as is the wetting 

correction; viz., that the exact first-order solution is spurious- 

ly singular near the body.  Fabula (1957) has shown that, in 

the case of wedge entry, use of the exact first-order result 

(the potential of flow past a diamond) leads to alarmingly large 

corrections, even for small deadrise angles, while use of flat- 

plate fitting leads to an infinite correction. He therefore 

recommends that the free-surface correction not be used, though 

he does believe in wetting corrections, the major defect of 

which we have noted have the same origin. The present author 

would prefer to see both corrections obtained via exact 
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Spray Root 

FIGURE 6 

SOME NOMENCLATURE FOR THE ENTRY PROBLEM 

* 
numerical calculations for a few cases, but this course also of- 

fers difficulty, as we shall see in § 2.5^ 

2.3«3 The Spray Correction 

In an effort to remove the singularity found in linearized 

theory at the point of contact between the frAe surface and the 

body, Wagner (1932), in the same fundamental paper to which we 

have already referred several times, sought to analyze the flow 

in thio region. Now from experiments — see, for example, the 

A step in tnis direction was actually taken by Wagner (1932)* 
who determined a formula for the added mass of a wedge by 
fitting a curve to three points: for  ß = 0° , the result of 
flat-plate fitting with wetting correction; for  ß = 18° , the 
result of a numerical calculation; and for  ß = 90° , the exact 
linearized solution. 
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photographs of Bisplinghoff & Doherty (1952) anc" Borg (1957) — 

it is known that the free surface is very nearly tangent to the 

body surface at the contact point, and runs noarl> parallel to 

the body for some distance before breaking out and becoming more 

nearly horizontal.  The thin sheath of watei which thus wets the 

body near the contact point, see Fig. 6, is called the "spray", 

while the point at which the free surface begins to assume a 

more horizontal shape is called the "spray root". 

Wagner reasoned tfcit the spray should be similar to that 

formed when a hydrofoil planes or glides at constant speed on the 

surface, which problem (see Fig. 7N he analyzed by conformai map- 

ping.  However, in the planing problem, the spray is of infinite 

extent, while we expect the surface rise in tVo. entry problem to 

be finite. Moreover, planing on an infinite body of water is not 

a properly posed problem in the absence of gravity, in the sense 

that it is impossible to find a solution in which the depth of 

immersion of the plate is finite; the free surface far from the 
* 

plate is a logarithmically infinite distance below it.  This 

It is easy to show tha4-. this is true whether the plate is supposed 
to be infinitely long, as it was by Wagner (1932) so as to keep 
the spray parallel to the gliding plate and hence model the 
wedge-entry problem,or whether the plate length is allowed to be 
finite, as it was by Green (1936b) (see also Milne-Thomson i960). 
The phenomenon follows from the 1/r decay of tne velocity field 
due to the plate (as for a vortex); the kinematic free-surface 
boundary condition for steady flow,  UA (r) ä u(0,r) ; and the 
simplicity of the image system in the case of infinite Froude 
number.  For a study of planing at large but finite Froude num- 
ber, in which cace tho difficulty disappears, see Cumberbatch (1958) 
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difficulty led Green (1935, 1936a) and Cooper (1949) to consider 

planing on water of finite depth and on jets of finite height, 

respectively, but such analogies are rather flimsy.  It may be 

concluded (as did cooper) that, while the deficienciss of the 

linearized theory near the contact poi-t are quite serious, the 

steady-state approximation has little to offer in the way of a 

remedy. 

2.3.4 Higher-Order Slender-Body Theory 

The difficulties encountered in attempts to correct the 

linearized results during the broach phase of the motion are not 

encountered in the case of complete submergence. For this case, 

Moran & Kerney (1964) have developed a second-order slender- 

body theory by formally expanding the free-surface boundary con- 

ditions in the body's diameter-length ratio T . The solution 

is quite complex, involving singularity distributions over the 

undisturbed free surface in even the simplest cases, and so is 

impractical as an engineering tool. However, through comparison 

of the first.- and second-order results, one may determine pre- 

cisely how close the body can approach the surface before the 

linearized theory breaks down.  Such information would be use- 

ful were it desired to obtain a numerical solution of the exit 

problem by integrating over time. 
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2.4 Other Analytical Methods 

2.4.1 Chou's Method 

A radically different approach was devised by Chou (1946) 

for the sphere-entry problem, and extended by Fabula & Puggles 

(1955) to the entry of a circular cylinder.  Basically, the 

idea is to use the potential of the unbounded flow about a one- 

parameter family of bodies defined such that, as the parameter 

increases (say), increasing portions of the lower surfaces of 

the family body and of the given body match.  Thus, Chou uses 

the family of spherical bowls having the same radius as the given 

sphere, while Fabula & Ruggles use its two-dimensional analog, 

the family of sectors of a circle of fixed radius. 

To relate the parameter to time, Chou looked at the 

asymptotic behavior of the solution.  He reasoned that the dis- 

turbances far from an entering body are sufficiently small to 

justify linearization of the free-surface boundary conditions 

there, and so that the analytic continuation of the potential 

ought to be anti-symmetric about the plane undisturbed position 

of the free surface far from the body, as is predicted by the 

linearized theory.  Conversely, such a plane of symmetry ought 

to be defined as the undisturbed free surface.  Thus the para- 

meter characterizing the shapa of the equivalent body should be 

related to the depth of penetration h by finding, as a func- 

tion of that parameter, the displacement of the lowest point of 
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the body below the plane which is normal to the axis of sym- 

metry and about which the unbounded flow is asymptotically 

symmetric.  Specifically, Cnou observed that, far from the body, 

tho potential can be approximated to second order in the in- 

verse distance from the body by the potential of a doublet of 

the correct strength and location.  Because of the symmetry of 

doublet flow, the undisturbed free surface is specified as the 

plane containing that doublet. 

Thus the depth of penetration is found as a function of 

the parameter characterizing the potential.  The pressure can 

then be computed from equation (5), and the intersection of the 

body with the free surface located at that point on the body at 

which p = p  . The force on the body can then be found by 

integrating over the pressure distribution on the wetted por- 

tion of the body. 

To illustrate these concepts, we again consider 

the wedge-entry problem. For this case we need the 

solution for flow past a hollow wedge, or, by symmetry, 

Alternatively, one can linearize the dynamical free-surface 
boundary condition, and so locate the intersection point as 
that at which the potential has the same value as at infinity 
or the undisturbed free surface, and use the added-mass concept 
to calculate the force; i.e., one can regard the free surface 
as an equipotenltal rather than an isobar. 

According to Cox & Maccoll (1957)» this problem has been worked 
out with Chou's method by A. Coombs.  It may also be noted that 
a good part of the corresponding solution for the cone-entry 
problem can be taken from the work of Rich & Karp (i960) on 
the flow about a finite conical shell. 
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for flow past a line jutting out from a half-plane, a.' shown in 

Fig. 8.  The flow region in the physical plane of thf equivalent 

problem can be mapped on to the upper half of the £-plane by the 

Schwarz-Christoffel mapping 

|f = A(C-b)(C+i)
eA-1/2(C-i)-ßA-1/2 (52) 

in which  z '•=  x* + ir*   , and the two sides of the vertex have 

been mapped onto  -1  aid +1  in the t,-plane, while the edge 

of the hollow wedge is mapped onto C = b  (say).  As in § 2.1, 

the complex potential is readily found in the £-plane» to be 

w = UAC (53) 

Now as t,  -* co , from (52) and (53) # 

1 dw ~ .   /.   2ß 
— -r- = 1 + b - —=■ TJ dz 7T 

1       I 1 
T + ° 7 (54) 

while z ~ At,  +  constant.  Thus, we must have 

b=|£ (55x 

for otherwise the complex potential would be source-like at 

infinity, which we know is not the case. 

Using (55) and the fact that z(l) = 0 , we find that 
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(52) can be integrated in closed form (!) to yield 

z = AtC-l)172"^ (C+l)1/2+ft',r (56) 

The constant A may now be determined quite easily in terms 

of the length of the side of the wedge, but this is not neces- 

sary for our purposes.  Rather, we expand (56) for large £ , and 

then invert the expansion to obtain, after substituting into (53) # 

w -Uz + const. +4|l - ^ + T A3 fill -^IVoj^ 

= Uz + const. + TT 1 -  2~ 
\      7T 

2 ,     „„2, ,    o Ä  i-l 
37rAj   + 0-J 

(57) 

Thus, to second order in the inverse distance from the body, the 

8 a 
perturbation potential is due to a doublet at z » *r «■ A , and 

so, according to Chou's method, 

A = ||h (58) 

The velocity field may now be easily computed in terms 

of the parameter £  from 

«•-«"•-&-»H*£ (59) 

in which we have used (53) and (58) and where the * Indicates 
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that the velocity components are measured in body-fixed coor- 

dinates.  To compute the pressure field, we have the body-fixed 

version of (5), 

I(p-ps) = -u*h* - |(u*2 + v*2 - U2) (CO) 

Noting from (56) and (58) that C = C(zA) , so that 

&--£& <6l> 

we find (53), (58), and (6l) that 

The constant in the brackets is included to make bti/hh    vanish 

far from the body, after noting that the arbitrary constant in 

the potential as derived here can be time-dependent.  Thus, from 

(56), (58)-(60) and (62), we get for the pressure distribution 

on the body surface 

E7 fei1   l» J J 1»     M 

-2 
- (I*)1"26* (l-C)1+20/Trf|-P-CJ       (63) 

The point at which the body contacts the free surface is that 
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at which the right side of (63) vanishes, and the force on the 

body can be found by integrating (63) over the thus determined 

wetted portion of the body. This we have done numerically for 

a range of deadrise angle ß (see Fig. 1? in § 2.6). 

It is seen that Chou's method leads to exact satisfaction 

of the body and dynamical free-surface boundary conditions, but 

ignores the kinematic free-surface boundary condition.  Thus 

the method is no nore precise than are those discussed previous- 

ly.  Moreover, it is somewhat arbitrary, in that a perturbation 

in the form of the approximating body in the region above the 

surface affects the solution.  On the other hand, it is no 

worse than other methods, which also fail to satisfy the free- 

surface boundary conditions near the body.  Further, it has the 

virtue of yielding realistic (non-singular) pressure distribu- 

tions, in which respect it is practically unique. 

2.4.2 Garabedian's Method 

Even more unusual is the approach put forth by Garabedian 

(1953)/ which is specialized to oblique wedge-entry.  His 

formulation is in terms of a function W defined on the 

free surface by* 

That such a function axists follows from equation (68). 
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S«t w(|) (64 

where s is the distance along the free surface and z = x+ir , 

for which he finds an analytic continuation into the whole flow 

region. He shows that z and the complex potential can be 

given parametrically in terms of w and dw/dz , and so re- 

duces the problem to one of ccnformal mapping from the W-plane 

to the dw/dz-plane. 

From this poi^t on, Garabedian's method is essentially 

an indirect one.  To simplify the mapping between the W and 

dw/dz planes, it. is desirable that the contours of the flow do- 

mains in these planes be rectilinear (so that they are amenable 

to Schwartz-christoffel mappings).  Thus Garabedian specifies 

that W have constant argument on the maps of the wedge, which 

implies that W be either pure real or pure imaginary on these 

contours, and leads eventually to the requirement in the physi- 

cal plane that the free surface separate from the wedge either 

tangentially (but not so that the wedge and free surface form 

an upward-pointing cusp, which, Garabedian states, would lead 

to a singularity) or perpendicularly. He then treats a curious 

case in which the separation is tangential on one side of the 

wedge and perpendicular on the other, for which the "physical" 

plane is as sketched in Fig. 9 .  The free-surface pressure on 

one side of the wedge is found to differ from that on the other 
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FIGURE 9 

ENTRY PROBLEM TREATED BY GARABEDIAN 

side, and the pressure in the fluid is non-uniform at t - 0 . 

This, of course, does not correspond to any physical situa- 

tion. We have attempted to apply Garabedian's method to ver- 

tical symmetric entry, assuming perpendicular separation on 

both sides of the wedge, but not with success.  The stumbling 

block we encountered is overcome in Garabedian's case by t^ie 

fact that dw/dz has a simple zero at the stagnation point, 

which is separated from the vertex in oblique entry. 

We thus conclude that Garabedian's method is incapable 

of yielding a practical flow situation.  It does offe.- the pos- 

sibility of yielding (non-physical) check cases for less exact 

methods. However, comparisons with Garabedian's results rs they 

stand would be difficult, due to their complicated form; he 

finds W and dw/dz in terms of a parameter t , bit does not 

actually work out z or the complex potential in terms of 

either t or W . 
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2.5 Numerical Methods 

As is clear from the survey presented thus far, no prac- 

tical analytical means for handling the nonlinearities in the 

free-surface boundary conditions has yet been developed.  Since 

the errors of the various approximation schemes are virtually 

impossible to estimate a priori, there has long been a good deal 

of interest in purely numerical solutions.  Indeed, Wagner (1932) 

mentions in his fundamental paper that he carried out an iter?i- 

tive solution for the entry of a wedge of 18° deadrise angle, 

but, regrettably, he gives no details of the solution. 

2.5.1 Conical-Flow Problems 

Most numerical analyses have, like Wagner's, been re- 

stricted to the concial-flow problems of the constant-speed 

entry of wedges or cones.  The great attraction of such 

problems is that they contain no characteristic length other 

than the depth of submergence. Hence a solution put in terms 

of the similarity variables x/h and r/h is otherwise 

independent of time.  The consequences of this fact arc far 

more profound than would appear at first sight.  To demon- 

strate this, we shall follow the derivations of shiffman & 

spencer (1951), after noting that the main results were 

found by Wagner (1932). 

Let s be a Lagrangian coordinate for particles on 

the free surface; specifically, let s be the distance 

WWM if K 
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between the particle and the vertex of the entering wedge 

or cone when h = 0 , the time at which the body first hits 

the water. Further, let P(s,h) be the vector from the 

vertex to the particle labelled with s when h > 0 . 

Clearly, from the similarity,, there exists a sector function 

? sucn that 

P(a.h) = h P(sA) (65) 

From this it follows that 

6P 

Sh" ? - 3 
h XT 

a2
£ s2 

' 'h3 
—— * 
P 

V 

dP 
I' (66) 

in which the primes denote differentiation with respect to 

argument. 

P ?   p 
Now u d^~P/c)h ~ is the instantaneous acceleration of 

the fluid particle s , while dP/ds  is directed tangential 

to the free surface.  Since the pressure on the surface is con- 

stant, the pressure gradient at the surface — which by New- 

?   P ton's law is parallel to d P/dh  — is normal to the sur- 

face.  Thus 
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ö2P/oh2 • ÖP/ös = 0 

or, from (66) 

P . p"= Id(p')2/d(sA) = 0 (67) 

Thus  [?'  is a constant,  specifically, considering its 

behavior as s/h -*■ » , and again using (66), 

|'(sA)|  = 1 = IdP/dsl (68) 

Equation (68) shows that the Lagrangian coordinate s 

is simply the arc length along the free surface, measured 

from its intersection with the body,  conversely, the arc 

length is a Lagrangian coordinate, and so the distance along 

the surface between any two fluid particles is constant in 

time, NOW the free-surface particle in contact with the 

body at any given time must move parallel to the body sur- 

face, and so always was and always will be in contact with 

the body.  Therefore, the arc length from a given fluid 

particle on the free surface to the contact point equals 

the distance from the point at which the body hits the 

surface to the position the particle had at the initial 

moment of impact.  In numerical solution, this fact is often 

used to check the free-surface shape, as we shall soon see. 
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Next we note that equations (65) and {66)  may be combined 

into 

ÖP  .    m  ÖP — _ 1, p _ S_ — 
3h  h — " h d~s (69) 

which becomes, on being resolved into our space-fixed coor- 

dinates, 

U ^x      h      h 

L *     - r       s 

öA/dr 

(l+(dA/dr)^ 

on    x = A(r,h) 

U ^r h    " h   [l+CaA/dr)2}*5 
(70) 

Now if we take the dot product of (69) with dp/ö^ , and use 

(68), we find 

ÖA  1 d0   1_ ÖP   s_ 
dT  U ds ~ 2h d"s ' ~ h 

on x = A(r,h)     (71) 

2       2   2 Since P = (A+h)*" + r  , and since we can always ignore a con- 

stant in the potential, (71) integrates to 

* - £ (A2+r
2-s2) on x ss A(r,h) (72) 

Thus, once the surface shape is known, the fluid velocity and 

the potential on the surface can be computed directly from (70) 

and (72).  Consequently, numerical analyses of conical-flow 

M M-       9 
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problems begin with the selection of a trial free-surface 

•Vhape, since use of either of these relations yields a 

reasonable boundary-value problem for the potential, 

Let us  now consider some specific numerical analyses. 

In Piersen's (1950) study of wedge entry, the trial free- 

surface shape is selected so as to satisfy the following 

criteria: 

1. The "continuity condition," that the fluid dis- 

placed by the entering body must appear above rhe un- 

disturbed free surface, follows from the incomprerfsi- 

bility of the flow and continuity equation. It may be 

noted that Wagner's (1932) flat-plate fitting solution, 

as given by equation (^9), does satisfy this condition. 

For later reference, we call Wagner's result 

Aw(r,h) . 

2. The "arc-lf;ngth condition," that the distance 

along the free surface from its point of contact with 

the body to some point at which the surface is essen- 

tially undisturbed equals the horizontal distance from 

the latter point to the axis of motion, is a consequence 

of the constancy in time of the arc length between any 

two fluid particles on the surface. Now Wagner's solu- 

tion does not satisfy this requirement, nor does it 

exhibit the spray found in experiments (see Fig. 6). 
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Wagner's Solution 
r,h) 

FIGURE 10 

PIERSON'S CONSTRUCTION OF A TRIAL FREE-SURFACE SHAPE 

Therefore, Pierson "took away" some of the fluid from 

the Wagnerian shape and used it to form a spray, as 

follows. Wagner's formula is multiplied by a constant 

f less than unity to get the shape of the free surface 

near x = 0 .  Tho spray portion of the free surface 

is taken to be triangular in shape, and so is described 

by the point at which it attaches to the body and by 

the angle 6     formed by the body and the free surface 

at the attachment point, as shown in Fig. 10.  Pierson 

selected several values of the attachment angle 6 , 

for each of which he "blended" the two parts of the 

free into one another (for which process he gave no 

specific recipe), and then adjusted the attachment 

— 
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point and the constant f so as to satisfy the con- 

tinuity and arc-length requirements. 

3. This shape is then further modified, again for 

eaci 6 , so as to satisfy the "similarity condition". 

That is, from the shape of the surface, the velocity 

of the particles thereon may be computed with equa- 

tion (70).  The position of the particles at a later 

time may then be computed by integration, and the re- 

sults checked for similarity. Pierson's procedure is 

actually somewhat more complicated than this, but the 

idea is the same. 

4. Finally,  6  is determined by applying what 

Pierson calls an "irrotatimality check". From Green's 

theorem, if 0.  and 0? are harmonic in a region 

bounded by a curve C , 

r    Ö0O        G0,  1 

[*1 ^-»2^!«=° (73) 
c 

whero n  is the outward directed normal to C . Pierson 

takes the contour to consist of the right naif of the 

free surface  (c.) , the right half of the body (c0) , 

the axis of symmetry  (C0) , and an infinitely large 

quarter-circle in the fourth quadrant.  Now is 0.  is 

the solution of the entry problem, we may invoke the 

body boundary condition, symmetry, and the boundary 

condition at infinity to reduce (73) to 
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0 " / F*l *2  - *2 *1 J"" + / *1 *2 <" P      n       nJ     u      n 
cl c2 

+ J 0X 02 di + u ccs 3 j 02 dl (74) 
L3 w2 

Since 0.  and its derivatives are known on C.  from (70) 

and (72) in terms of the free-surface shape, equation (7^) 

could be reduced to one involving only known quantities and 

would hence constitute a check on the assumed shape if 0? 

could be specified so that its normal derivative vanishes 

on Cp and CU .  Clearly, the solution for flow past a 

wedge could be used for this purpose.  Instead, Pieraon con- 

structed 0p by positionir."., one doublet at the spray root 

and another at its image with respect to the side of the 

wedg^, so as to make d0p/dn vanish on Cp , and ignored 

the contribution of C.   ,     While this choice emphasizes 

the shape of the free surface at its spray root, the nec- 

essary neglect of the integral over C-, and the compli- 

cations which ensue in the evaluation of the integral over 

C.  due to the presence of the singularity thereon are 

serious defects in Pierson's method. 

Once the free surface shape is established, the velocity 

distributions on the wedge are found from a variant of 

Cauchy's integral formula.  Letting u - iv  = dw/dz , we have 

c'      B 
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in which z  is a point on the wedge, and the contour c' con- o 

sists of the free surface (on which u and v are known from 

equations (70)), the wetted surface of the wedge (on which the 

normal velocity is known from the body boundary condition), 

and the lower half of a large circle centered at the origin (on 

which u and v vanish). By rotating the coordinates so that 

the x-axis (say) is along one side of the wedge, the real 

part of (75) becomes 

u(zB) - - k J v(2) i.lBJ   &.) -^    (76) 
C2       

B        Cg+C^ b 

in which C« is the side of the wedge on which the point B 

is located, C*    is the other side of the wedge, and C,  is 

the free surface. According to Pierson, the contribution of 

the integral over Cp' is quite small, while the other terms 

on the right side are known, and straightforward iteration 

converges rapidly. 

Once the velocity distribution along the wedge is known, 

d#/dh can be computed from the similarity, and so the press- 

ure distribution is readily determined. As a check, the 

potential was computed at a few points on the wedge from an 

equation analogous to (75)« 

While Pierson's analysis contains a number of interesting 

ideas, the somewhat imprecise method by which the free sur- 

face was constructed (in particular, the fairing of the spray 
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into the Wagnerian shape, and the approximation made in the 

irrotationality check), together with the apparently low accur- 

acy used in the calculation (this was carried out before the 

dawn of the cuwputer age), prevent us from accepting his 

results as standards of comparison. 

Hillraan's (19^-6) analysis of vertical cone entry also 

starts by choosing a trial shape of the free surface, and 

uses integral equations for the value of the potential on the 

boundary. However, both the free-surface shape and the poten- 

tial on the cone are prescribed analytically; specifically, 

they are represented by polynomials. The form of the poly- 

nomial for the surface shape is chosen so as to satisfy the 

asymptotic condition that A — r J , which follows from the 

kinematic boundary condition under the assumption that # 

is doublet-like far from the body. To determine the coef- 

ficients, the arc-length and continuity conditions are im- 

posed on the free-surface shape, along with a requirement 

(to be discussed below) that the surface be tangent to the 

cone at the attachment point. The remaining coefficients 

are determined by satisfying the integral equation which 

governs the potential at an appropriate number of points. 

This requires adjustment of the surface shape, so that the 

potential calculated from the integral equation agrees with 

that calculated from (72) on the free surface.  Since the 

surface shape enters into the kernel in a complicated fashion 
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(more so than in equation (76), since elliptic functions are in- 

volved due to the axial symmetry), Hillman linearized the equa- 

tions about a trial free-surface shape, the choice of which is 

not fully motivated, however. 

The major advantage of Hillman's procedure over Pierson's 

is that it can, in principle, be made to yield results of any 

specified accuracy simply by increasing the orders of the poly- 

nomials assumed for the free-surface shape and the potential.  Un- 

fortunately, Hillman*s requirement that the free surface be tan- 

gent to the body, however plausible it may seem at first sight, 

cannot be justified.  Indeed, according to Garabedian (1953)/ such 

a situation would imply a singularity at the attachment point. 

Mackie (1962) has examined the question of the attachment angle 

in some detail (admittedly with a linearized theory), and finds 

the angle to be acute but finite both in wedge entry and cone en- 

try.  Thus Hillman's results are of uncertain accuracy. 

The approach employed by Borg (1957) again begins with 

choosing a trial free-surface shape which satisfies the arc- 

length and continuity reouirements.  The potential on the free 

surface is calculated fiom (72), and the potential elsewhere is 

found by relaxation.  The fluid velocities en the assumed free 

surface are then calculated, and compared with those called for 

by (7o).  The free-surface shape is then "altered" (how this is 

done is not stated) and the procedure repeated until a satis- 

factory check is obtained.  Then the relaxation net is made finer 
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and the process restarted. 

Borg worked out only one case, the unsymmetrical entry 

of a wedge of 90° included angle.  Since, as we have noted, other 

numerical analyses contain errors which make their accuracy sus- 

pect, and since these conical-flow problems are the simplest to 

analyze, there still exists a need for m'merical results of this 

type with which the various approximate methods could be compared, 

These days any attempt in this direction should certainly take ad- 

vantage of the existence of high-speed computing machinery.  Thus 

a corrected version of Hillman's approach, which would seem to 

be most adaptable to programming, is recommended for future work. 

2.5.2 Entry of Bodies of Arbitrary Shape 

The surface-crossing of non-conical bodies is, of course, 

considerably more difficult to treat, since the time variation 

cannot be accounted for by a priori similarity arguments.  Re- 

cently, an ambitious effort was made at Southwest Research Insti- 

tute (Chu & Abramson 1959/ Chu I960, Chu & Falconer 1963) to de- 

velop a computer prog:am capable of describing the hydrodynamics 

of the water entry of bodies of arbitrary shape.  Of particular 

interest were olunt two-dimensional shapes such as are typical of 

ship sections.  The free-surface shape was calculated by using a 

finite-difference version of the kinematic free-surface boundary 

condition.  With the potential en  x = A  found by integration 

of the dynamical boundary condition, relaxation methods were used 
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to calculate the potential elsewhere.  To start the calculations, 

the linearized solution of § 2.1 was used. 

The method required an impractically long time even on an 

extremely fast computer.  This results from the large number of 

mesh points required; indeed, machine capacity prevented pre- 

scription of as many points in the spray region as would have 

been liked.  But even disregarding this difficulty, the method 

is rendered inherently inaccurate because of a singularity at 

the moment of contact. 

This singularity was first noted by von Karman (1929) • 

Its presence is easily deduced from equation (12) and (3^-)/ ac- 

cording to which the force per unit length on a cylinder entering 

water is 

Fx(h) =-• ^rpu2 R(h) R'(h) (77) 

so that the impact pressure is 

iim F (h)/R(h) = 7rpU2R'(0) (78) 
h-0  X 

which is infinite for blunt bodies. 

Note that the singularity is not a consequence of the 

linearization which underlies the above results, however.  Im- 

mediately before impact, the potential is constant —• zero, ac- 

cording to the initial condition (11) ~ all throughout the water 
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Immediately after impact, the body boundary condition (8) demands 

that the potential have a finite gradient in the vertical direc- 

tion (if the enterinc body is blunt) at the impact point.  Since, 

according to the maximum-modulus principle, the potential must 

achieve its extreme values on the boundaries of the flow region, 

this means that the potential at the impact point mu3t differ 

from its value at infinity, which, in turn, is the same as before 

impact.  Thus the potential at the impact point undergoes a dis- 

continuous change at impact, so that d0/dt , and hence p , are 

infinite at impact. 

The difficulties caused by this singularity prevent the 

results of Chu & Falconer from being of practical value.  Never- 

theless, their report is valuable for a detailed discussion of 

the application of relaxation methods to the problem. 

2.6 Comparison and Evaluation of Theories 

Calculations which cover the entire surface-crossing period, 

from complete submergence to complete emergence, are relatively 

few in number.  Results for the time history of the net upward 

force are shown in Figs. 11-13 for the sphere (shiftman & Spencer 

1945a), the slender biconvex airfoil (Moran 1961), and the slender 

parabolic spindle (Moran 1961), respectively,  in all these cal- 

culations the free-surface boundary conditions were linearized, 

and no corrections of the type discussed in § 2.3 were made.  Moran 

also linearized the body boundary condition. 
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That the force is generally upward can be explained as 

follows.  Consider, for example, the exit problem.  Initially, 

the fluid has a net momentum upward (equal to the product of the 

added mass and the body's speed).  As the body exits, this momen- 

tum must vanish.  Thus it is transferred to the body as an upward 

thrust,  similar reasoning applies to the entry situation. 

A good deal of attention has been given to the impact phase 

of water-entry problems.  Figs. 14 and 15 compare the predictions 

of several theories for the time history of the impact force felt 

in the early stages of the entry of a sphere and of a circular 

cylinder, respectively.  The variations with deadrise angle of 

the added masses of cones and wedges are shown in Figs. 16 and 

17, respectively, while Fig. 18 compares some predictions as to 

the pressure distribution on an entering wedge.  In these figures, 

the various curves are distinguished as to the approximating 

bodies used to calculate the added mass, the wetting correction, 

and the free-surface correction.  The curves derived with chou's 

(19^-6) theory, which cannot be described in these terms, are called 

"Chou's exact method" if the free surface was regarded as an iso- 

bar and "Chou's approximate method" if it were treated as an 

equipotential.  Ihe points calculated by Hillman (1946) and by 

Pierson (1950) are given the designation "numerical". 

As we have indicated in our discussion (§§ 2.1-2.5) of 

the various analyses which underly the results shown in Figs. 11- 

18, all of these analyses have some mathematical defect, and 

^mm—^^^ 
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-A  

Lens fitting (exact linearized solution) (Shiffman & 
Spencer 1945a) 

Disc fitting (Plesset 1942) 

Ellipsoid fitting (Shiffman & Spencer 1945a) 

Sphere fitting (Shiffman & Spencer 1945a) 

Lens fitting, with wetting correction by disc fitting 
+ experiment, and free-surface correction by ellipsoid 
fitting (Shiffran & Spencer 1945b) 

  Chou's exact method (Chou 1946) 

 O 

0- 

FIGURE 14 

COMPARISON OF THEORETICAL RESULTS FOR 
IMPACT FORCE ON A SPHERE 
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O- 

-D- 

Lens fitting (exact linearized solution) 
(Fabula 1955) 

Flat-plate or ellipse fitting (Fabula 1955) 

Lens fitting, with wetting correction by 
ellipse fitting (Fabula 1957) 

Flat-plate fitting with wetting correction 
(Fabula 195?) 

   Chou's exact method (Fabula & Ruggles 1955) 

—0   Chou's approximate method (Fabula & Ruggles 1955) 

■A- 

FIGURE 15 

COMPARISON OF THEORETICAL RESULTS FOR 
IMPACT FORCE ON A CIRCULAR CYLINDER 
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Slender double-cone fitting (Fraenkel 1958b) 

Parabolic spindle fitting (Armstrong & Dodd 1957) 

Disk fitting (Plesset 1946) 

Ellipsoid fitting (shiftman & Spencer 1951) 

Ellipsoid fitting, with wetting correction 
(Shiffman & Spencer 1951) 

Ellipsoid fitting, with wetting and free-surface 
corrections (shiffman & Spencer 1957) 

Numerical (Hillraan 1946) 

FIGURE 16 

COMPARISON OF THEORETICAL RESULTS FOR 
ADDED MASS OF A CONE 
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Diamond fitting (exact linearized solution) (Wagner 1932) 
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COMPARISON ÜF THEORETICAL RESULTS FOR 
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post are certain to be in serious error during broach, at least 

as to the details of the flow.  Only in the case of complete sub- 

mergence do the approximations underlying the various theories 

become justifiable.  The extent to which this is true is indi- 

cated in Fig. 19, which shows results obtained by Moran & Kerney 

(1964) for the maximum distortion of the free surface (A(0,h)) 

during the vertical surface-crossing of a slender ellipsoid of 

revolution according to first- .ind second-order theory.  To make 

the comparisons refer only to the degree to which the free-surface 

boundary conditions are satisfied, certain second-order effects 

having to do only with the body boundary condition are included 

in the curve marked "First Approximation".  It is seen that li- 

nearization of the free-surface boundary conditions is unques- 

tionably justifiable when the depth of submergence of the upper 

end of the body  (h - 1)  is greater than about 1^ body diameters. 

The ultimate test both of the model formulated in § 1.2 and 

of the various analyses of that model is, of course, in experi- 

ments.  While accurate data on the loads encountered in surface- 

crossing are almost as difficult to obtain experimentally as they 

are from theory, there nevertheless exists a fair amount of re- 

liable data with which the results discussed here may be compared. 

Data on the impact force felt in water entry are particularly 

abundant, and are compared with the relevant theoretical pre- 

dictions by Shiffman & Spencer (1945b), Chou (1946), and Nise- 

wanger (196l) for the case of sphere entry; by Shiffman & Spencer 
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(1951) for cone entry; and by chu & Abramson (1959) for the two- 

dimensional entry of wedges and circular cylinders.  Clark & Ro- 

bertson (i960) have attempted to measure the history of the up- 

ward force thru the submerged and broach phases of water exit, 

but their data — obtained by twice differentiating photographic 

histories of the trajectory, rather than by using the mere accurate 

accelerometer technique — exhibit large scatter. 

Measurements of pressure distributions on the body are 

even more difficult to carry out than are force measurements. 

This is partly due to the transient nature of the problem.  Also, 

the finite size of the gages, which must of course be fully wetted 

before they can register, makes it absolutely impossible to mea- 

sure the pressure in the immediate vicinity of the point at which 

the free surface intersects the body.  Within these limitations, 

pressure distribution data are available for the entry of the cir- 

cular cylinder (Schnitter & Hathaway 1953) and of the sphere 

(Nisewanger 1961). 

Rather than further complicate our curves, we refer the 

reader to the aforementioned reports for comparisons between tht:ry 

and experiment.  Such comparisons can be summarized as follows. 

Theory is in fair agreement with experiment for the impact forces 

felt by spheres and cones.  For these cases, it makes little dif- 

ference whether ellipsoid fitting is used to calculate the added 

mass or whether the exact linearized problem is solved, but the 

wetting and free-surface corrections are 1 n the right direction. 
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Also, Chou's (19^6) theory is as good as any other. There Is at 

least qualitative agreement between theory and experiment on the 

general shape of the force vs. time curve, see Figs. 11-13, and 

on the occurrence of a peak in the pressure distribution near the 

edges of the wetted region, see the blunt wedce case of Fig. 18. 

However, theory is wrong even as to trends in two-dimen- 

sional impact.  The added mass coefficient of a wedge, defined as 

the ordinate of Fig. 17 generally decreases with increasing dead- 

rise angle according to theory, out actually increases for small 

deadrise angles (Bisplinghoff & Doherty 1952). Also., the initial 

impact force in the entry of a cylinder is not finite, as pre- 

dicted in rig. 16, but is zero (Schnitzer & Hathaway 1953)- Espe- 

cially in the latter case, these erroneous predictions reflect 

the infinite impact pressure found in the theory of blunt-body 

entry, which anomaly was noted in § 2.5.2 to be a defect of the 

formulation of § 1.2 rather than of the analyses based on that 

formulation. Of course, the impact pressure felt by a blunt- 

nosed three-dimensional body is also infinite, but the nature of 

the singularity is such that it shows up as a finite impact force 

only in the two-dimensional case. 
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CHAPTER THREE 

"UNCONVENTIONAL" SOLUTIONS 

As noted in § 1.2, the formulation set forth therein is 

not universally followed. This partly reflects the sometimes 

serious discrepancies noted in § 2.6 to exist between results ob- 

tained under th t formulation and experiment, but often is simply 

due to the fact that it is possible to analyze some of the factors 

neglected in the "conventional" formulation. This chapter pre- 

sents a survey of both types of extensions to the basic solutions 

discussed in Chapter Two. 

Before we begin the discussion, however, we reiterate the 

remarks made in § 1.2 regarding the neglect of cavitation. This 

phenomenon certainly has a substantial influence on the loads 

felt in surface crossing, especially in the latter stages of en- 

try problems, and in righ-speed exit. Unfortunately, the analysis 

cf unsteady cavitation even in a two-dimensional flow bounded by 

a free surface is beyond the scope of the present state of the 

art. Extensive (and continuing) experimental studies at the Naval 

Ordnance Laboratory (under the direction of A. May) and the Naval 

Ordnance Tept Station (under J. G. Waugh) have resulted in some 

beautiful photographs and good hydroballistic data, but have 

yielded little of aid to the hydrodynamicist.  On the other nand, 

it is quite clear that cavitation is not responsible for all of 

81 
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the serious disagreements between theory and experiment reported 

in § 2.6, especially those connected with the infinite impact 

pressure predicted for blunt-body entry.  Thus, the ensuing dis- 

cussion, while incomplete since it ignores cavitation, is certain- 

ly not meaningless. 

3.1 Effects of variable Entry Speed 

Though the accelerations due to surface crossing can be 

considerable, they are of such short duration that the total 

velocity change is usually only a few percent of the initial speed 

(Breslin & Kaplan 1957)-  Nevertheless, it is of interest to note 

that the effects of variable entry speed are easily calculated 

within the approximations of the linearized theory, as was noted 

by von Karman (1929) and Wagner (1932). 

The crucial point is that the linearized free-surface 

boundary conditions can still be written as (25) and (26) even 

when U is variable.  T s the problems of determining 0  and A 

are still decoupled, an-  he potential problem can still be re- 

duced to one of steady unbounded flow, as in Fig. 2. From this 

quasi-steadiness and the form of the body boundary condition (8), 

the potential is directly proportional to the instantaneous value 

of u , but otherwise depends on time only parametrically through 

the depth of submergence h(t) ; i.e., 

0 = U(t) F(x,r,h(t)) (79) 
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Then, from (13)» the apparent mass is a function of h but is 

otherwise independent of t .  In the important case where the 

body is in free fall during its passage thru the surface, Newton's 

law and equation (12) yield as a result 

«I--Jt»"W (80) 

where M is the mass of the body.  Integrating, we obtain 

dh     MUo u E dt= Tmz(hj (8l) 

where U  is the body speed at h = 0  (before entry or after 

exit).  Thus, once the potential problem has been solved para- 

metrically as a function of h ,  U(h) can be found from (8l), 

h(t)  can be found by integrating (8l), and hence the pressure on 

the body can be calculated from (5), the free-surface distortion 

from (26 ), etc. 

3-2 Erfects of Gravity 

Gravity has both direct and indirect effects on the body's 

pressure distribution. As can be seen from equation (5)# gravity 

induces a linear variation of the pressure with depth, which 

leads on integration to the familiar force of buoyancy, which need 

not be further discussed here.  Of greater interest is the in- 

direct effect of gravity, which arises because of the modification 
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of the dynamical free-surface boundary condition from (7) with- 

out gravity to 

<*>t + |-(V0)
2 + gA = 0    on x = A(r,t) (82) 

with gravity. 

Available analyses of the effects of gravity all make the 

assumption of small disturbances on the free surface, and so 

linearize the associated boundary conditions. After dropping the 

quadratic term from (82), applying what's left on x = 0 , differ- 

entiating with respect to time, and substituting for A.  from (26), 

we obtain 

0tt +g0x=O onx=C (83) 

which replaces (25) in the formulation of the linearized problem. 

Most analyses of surface-crossing at finite Froude number 

refer to water-exit situations (as noted in § 1.4 the fluw is 

irreversible when gravity is not negligible),  sakai, Husimi, & 

Hatoyama (1933) considered vertical variable-speea exit in two 

dimensions of a circular cylinder, which they represented by a 

point doublet of strength proportional to the exit speed.  Their 

solution was obtained by a Fourier-transform technique directly 

analogous with Lamb's (1913) treatment of the motion of a sub- 

merged cylinder parallel to the surface.  Integration of a linear- 
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ized pressure formula yielded for the net upward force per unit 

length 

* = 7T f 1  . F  + F  _ 2F3e2dF E (2dF)l (84) 

PUS     Ud3   2d2   d X     J 

where E,  is the exponential integral,  F is the square of the 

Froude number, 

F s u2/ga (85) 

a is the cylinder radius, and d is the depth of submergence 

of the center of the cylinder, h - a . 

Corresponding formulas for the exit of a three-diinensional 

doublet (and hence for the exit of a sphere) or of other singu- 

larities may be worked out by specializing the general results 

for the motion of a point singularity of time-dependent strength 

aiong an arbitrary path beneath a free surface, which was derived 

via integral transform methods by Haskind (1946) and Brard (19-48); 

see also Wehausen & Laitone (i960).  In the special case of ver- 

tical exit of a constant-strength singularity, the solution can 

be expressed in terms of image singularities, as was shown by 

Moran (1964a) through the unusual procedure of (i) assuming an 

expansion in even powers of the Froude numder, (ii) determining 

the general term of the expansion, and (iii) showing that the 

expansion satisfies an ordinary differential equation which, on 
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integration, yields a solution in closed form valid for all 

Froude numbers.  Specifically, the fundamental solution corres- 

ponding to vertical constant-speed motion of a source of constant 

strength was found to consist of the image sink of the infinite- 

Froude-number solution, plus a continuous distribution of sources 

along the vertical line extending upward from the image sink to 

infinity.  The strength of the distribution decays exponentially 

with increasing distance from the image point.  Both the strength 

and the rate of decay are inversely proportional to F . 

Aside from these fundamental solutions, analyses of surface 

crossing at finite Froude number are based on slender-body theory. 

Moran (1961) assumed an expansion in inverse powers of F tc 

treat the water-exit at large but finite Froude numbers of slen- 

der bodies of revolution and symmetric airfoils. More recently, 

he distributed the fundamental solution described above to treat 

the case of arbitrary Froude number (Moran 1964b).  In the former 

paper, complete time histories (including the broach phase of mo- 

tion) of the axial force felt by a biconvex airfoil and by a 

parabolic spindle were calculated, while the latter paper presents 

results for the submerged part of the water-exit of a slender 

ellipsoid of revolution. 

The hydrodynamic contribution to the upward force (i.e., 

buoyancy is neglected) felt by a slender ellipsoid as it approaches 

the surface from below is plotted in Fig. 20 as a function of 

time.  It is seen that the effect of gravity, outside of buoyancy, 



87 

x 
? ? 

T     J5PU   S max 

0.4,- 

0.3 

0.2 

0.1' 

OES 

-0.1— 

-0.2- 

■0.3' 
1.0 

I  = body length 

T = thickness ratio 

J_ 

FIGURE 20 

EFFECT OF FROUDE NUMBER ON HYDRODYNAMIC 
PART OF UPWARD FORCE ON SLENDER ELLIPSOID OF 

REVOLUTION IN VERTICAL WATER EXIT 
(Moran 1964b) 



88 

is to reduce the upward iorce from that felt at infinite Froude 

number.  This reflects the fact that, at finite Froude number, 

part of the fluid energy is used to set up wave motions rather 

than being transferred to the body.  However, from Fig. 20 and 

the results obtained thru the broach phase of the motion by 

Moran (I96I), we do not expect these Froude-number effects to be 

appreciable at practical values of that parameter.  This holds 

even more emphatically for the lateral forces and moments felt 

in vertical exit, which are independent of Froude number accor- 

ding to slender-body theory (Moran 1964b). 

The above remarks refer to water exit in an initially 

calm sea.  In view of the linearization, the effect of waves can 

be included by superposition.  Breslin & Kaplan (1957) so calcu- 

lated the effects of plane waves on the transverse force and 

pitching moment acting on a slender exiting body of revolution, 

and found the effects to be significant if the waves are high 

enough.  The effects of waves on slender bodies in oblique exit 

have been considered by Nelson (I96I) and Cuthbert & Kerr (1962), 

the latter authors making a non-specific claim that Nelson's 

work contains several errors.  In both analyses, however, the 

image of the body in the free surface was completely ignored. 

While, as Goodman (i960) showed (see § 2.2.2), this is justi- 

fiable within the limits of the linearized theory for the ver- 

tical-exit case, a more careful analysis ought to be made for 

the oblique-exit situation. 
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Recently, the effects of gravity during the water entry 

of slender bodies were considered by Mackie (1963)» who used the 

integral transform technique.  Unfortunately, his results are in 

the form of integrals, and refer mainly to the free-surface shape. 

However, reasoning as in the exit case discussed above, we would 

expect the hydrodynamic contribution to the decelerating force 

felt in entry to be greater than that felt at infinite Froude num- 

ber, because of the wave motions set up during entry, but we would 

not expect the increase to be very large. 

3.3 Effects of Water Compressibility 

The effects of variable entry speed and of gravity, while 

interesting and sometimes important, clearly have nothing to do 

with the most striking failure of the conventional formulation, 

viz., its demand that the impact pressure felt by a blunt-nosed 

body be infinite.  In his pioneering paper, von Kärman (1929) 

ascribed this defect to the neglect of the slight compressibility 

of the water.  He reasoned that, when a flat body of surface area 

A strikes the surface, the ensuing disturbance travels at the 

speed of sound in the water,  c  (say). Thus the mass of fluid 

accelerated in time 6t is pAc 6t .  Since the velocity of 

this mass is increased from 0 to u in time 6t , the force 

acting on the fluid is, by Newton's law,  (pAc 6t) (U/6t)  and 

so the pressure felt by the body is pcU .  In the incompres- 

bile-flow approximation,  c -♦ 00 .  Thus, the reasoning goes, 
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the singularity at impact predicted by conventional theory can 

and ought to be removed by accounting for the compressibility of 

the water. 

Von Karman's analysis c.1 early applies only at impact.  The 

first attempt to describe compressibility effects at later times 

was made by Trilling (1950a), whose formulation has been used by 

practically all subsequent investigators.  Basic to the analysis 

is the assumption that the fluid velocity is everywhere small 

compared to the sound speed.  Neglecting viscosity, it then fol- 

lows that the flow is irrotational, and so can be derived from a 

velocity potential.  The continuity equation is linearized by 

the small-Mach-number assumption as fellows: 

v.    v20 = _ 1 Dp_     1  D£ (86) 
V 1 v     p Dt     n   2  Dt 

{^°} 
r       pc 

where the undisturbed values of p  and c are taken.  Bernoulli's 

equation is also linearized, and so we have 

P « - P 0t (6?) 

exactly as in the linearized incompressible case (with gravity 

neglected).  Combining (86) and (87), we find that <t>     satisfiej 

the wave equation, 

V20 = \ 0 (88) 

%     W  T.,  |  «■■ 
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Since compressibility effects are expected to be impor- 

tant primarily during the initial stages of ■/ater entry, the body 

boundary conditions are applied on the undisturbed free surface 

in the form 

0=-U  on x = 0 ,  r< R(h) (89) 

where R(h) locates the intersection of the body with the undis- 

turbed free surface. That is, von Karman's (1929) flat-plato 

fitting technique is used. The free-surface boundary conditions 

become, on linearization, the same as in the incompressible case, 

viz., 

0=0     onx=0,r> R(h) (90) 

At = 0x   on x = 0 , r > R(h) (91) 

In the two-dimensional case, Trilling (1950a) noted that 

the boundary-value problem posed by equations (88)-(90) is iden- 

tical with the problem of determining the lift of a flat wing in 

supersonic flow.  The correspondence is detailed graphically in 

Fig. 21. Note, in particular, that the time coordinate in the 

entry problem is equivalent to the streamwise coordinate in the 

wing problem. 

Thus, solutions of the entry problem can be taken directly 

from the wing-theory literature, extensive references to which are 

contained in the books by Ward (1955) and by Jones & Cohen (i960). 
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Trilling used this equivalence to find the pressure distribution 

on the face of a rectangular cylinder for t < R/c , at which 

time the "Mach cones" from the two edges of the equivalent rec- 

tangular wing intersect.  Ogilvie (1962) gives full details of 

the solution up to t = 2R/c , at which time those Mach cones have 

crossed each other and have hit the opposite side edges.  The 

pressure distribution on the face of the rectangle is found to be 

as follows: 

pfu = 1 for 0 < |rj < R - ct < R , 

= --?sin [2 *-&-+  1]  for 0< R - ct < r < R 

1  . -If. r +R = — sm  2 J—!-r— TT ct . x] . I sin^[2 14- + xj 

for 0<   Ir|   <ct-R<R 

(92) 

These formulas are plotted in Fig. 22  Note that p = 0 

for ct = 2R all along the face of the rectangle.  By integration 

of equations (92), the upward force on the body is found to be 

Fx = 2pcUR [l - ||]     for ct <_  2R (93) 

Calculations of the equivalent wing problem in the region corres- 

ponding to t > 2R/c are quite difficult, but have been carried 

out for t <_ 4R/C by Gunn (194'f) using Laplace transforms with 
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FIGURE 2 3 

PRESSURE DISTRIBUTION ON RECTANGULAR CYLINDER 
ENTERING COMPRESSIBLE WATER 

(Ogilvie 1962) 
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respect to the streamwise variable, by Lagerstrom & Graham (1947) 

using conical-field superposition, and by Behrbohm (1952) using 

source superposition.  Stewartson (1950) used the Laplace trans- 

form method to find the behavior of the solution asymptotically 

far downstream of the leading edge. Applying these results to 

the present problem, we find that the pressure is negative over 

the entire face of the rectangle for 2R < ct < 4R and for t -» «, 

and hence that the net force is then downward (!). 

As c -* * , we expect to recover the incompressible-flow 

limit.  Since the solution is evidently a function of ct , we 

therefore require the solution for a lifting slender semi-infinite 

rectangular wing far downstream of the leading edge. As noted 

above, this has been given by stewartson.  But clearly, in the 

limit as ct -* « , the equivalent problem becomes the flow past 

a lifting doubly infinite slab, which, in the cross-flow plane, 

is the same as two-dimensional flow past a line segment.  Thus 

the incompressible-flow limit is von Karman's (1929) solution, as 

would be expected. 

Egorov (1956) has also considered entry of a rectangular 

cylinder, but assumes early in the analysis that the time depen- 

dence of the potential is completely contained in an exponential 

-at   * factor e   .  After some complicated expansions involving 

Note that this suggests the Laplace-transform method used by 
Gunn and Stewartson. 
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Mathieu functions are worked out on this premise, the force is 

obtained as a function of time, and Newton's law is invoked to 

determine the parameter a  • Though the analysis seems to work 

out, there is, in fact, no justification for the assumed tiir.3 de- 

pendence, and the results cannot be correct. 

Besides treating the rectangle problem, Trilling (1950a) 

gave the pressure distribution of a slender wedgs (with included 

angle small compared to the "Mach angle" tan" ™ ), which he 

showed to reduce to that predicted by von Karman's theory as 

U/c •*  0 .  The wedge-entry problem has recently been reconsidered 

by Skaiak & Feit (1963), who give full details of the solution 

for all values of the "edge Mach number"  (u/c) ctn ß , which 

is defined as the ratio to the sound speed of the lateral speed 

of the intersection of the body with the undisturbed free surface 

In these cases the associated supersonic flow problem is, of 

course, the flat delta-wing at angle of attack.  Pressure dis- 

tributions are plotted in Fig. 2 3. The upward force is found 

to be 

F 
= 2 for  U:tn0>c 

= ""  ffif      for u ctn ß < c        (94) 

pcUh ctn ß 

c E(k 

where, in the second formula, the modulus k of the complete 

elliptic integral is 

* ■' — •> 
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FIGURE 23 

PRESSURE DISTRIBUTION ON WEDGE 
ENTERING COMPRESSIBLE WATER 

(Skalak & Feit 1963) 
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k = 

FIGURE 2k 

REGION WHERE PRESSURE ON ARBITRARILY 
SHAPED BODY IN COMPRESSIBLE WATER ENTRY 

IS RELATIVELY EASY TO CALCULATE 

2   2 
1 „ U ctngß (95) 

The treatment of non-polygonal shapes with this formula- 

tior is more difficult, and no results have been published. 

Trilling (1950a) suggests approximating the profile by a poly- 

gonal one, but this seems rather drastic.  The corresponding 

problem in wing theory is reduced by the Eward-Krasilschikova 

theory (see Jones & Cohen i960) to the evaluation of a few 

definite integrals which are, however, not readily expressible 

in terms of tabulated functions.  The simplest case is where 

the Mach cone facing upstream from the point under study inter- 

sects the body profile upstream of those points where the edge 

Mach number becomes sonic, as shown in Fig. 24, For such 
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points, the pressure can be expressed as (of. equation (13,16) 

in Jones & Cohen i960) 

r
rA(r't} 

P%V = *J [{ct - §X(t}))2 - (r-n)2]  <h)      (96) 
r
B(
r»t) 

where, as shown in Fig. 24, h    and B are the points at which 

the Mach forecone from (r,t) intersects the body contour in 

the r-ct plane. 

For example, consider the constant-speed entry of a para- 

bolic cylinder of nose radius I , for which 

X(r) = \T2
/1 (97) 

Substituting (97) into (96), we find that the pressure can be 

expressed in terms of an elliptic integral of the first kind, 

s ince the integrand is simply the inverse square roo' of a 

quartic polynomial (Byrd & Friedman 1954). However, to actu- 

ally write out the result, we would have to solve the quartic, 

which turns out to be quite messy. The task simplifies con- 

siderably when r = 0 , and so we obtain for .he stagnation- 

point pressure the formula 

i-l 
p~ p(-h.Oft) = i [l + yi + 2ct] ' K(k) (98) 
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where the modulus of the complete elliptic integral is 

k = vU2ct/i -_1 (99) 

Vl+2ct/i + 1 

•3    2 
These r3sults are good for t <_ *■ iu/c  , at which time the 

forecone from the stagnation point intersects the sonic points 

on the profile. 

The entry of three-dimensional shapes into compressible 

water offers difficulties of the same order of magnitude as 

those encountered in treating curvilinear two-dimensional pro- 

files.  Trilling (1950a) treated slender cones and flat-faced 

circular cylinders (entering end on), but his analysis has been 

criticized by Korkegi (1952), who used retarded-potential con- 

cepts tc study the entry of a paraboloid of revolution for times 

in which the only edges involved are supersonic (cf. our treat- 

ment above of the corresponding two-dimensional case).  Pressure 

distributions on the paraboloid were calculated, but were not 

integrated to give the history of the force, since, like the 

two-dimensional results, they involve an elliptic integral. 

It is of interest to note, as was pointed out by Korkegi, 

that when the edge Mach number is supersonic, the free surface 

is truly undisturbed.  Thus, in this case, the linearized 

solution exactly satisfies the free-surface boundary con- 

ditions.  Of course, the theory is still only approximate, 

since the continuity equation has been linearized in deriving 
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the wave equation (88), and the body boundary condition has also 

been approximated.  Nevertheless, it is of interest to note that 

the wetting and free-surface corrections discussed in § 2.3 are 

identically zero when the lateral expansion rate of the points 

at which the body intercepts the undisturbed free surface is su- 

personic.  When the edge Mach number is subsonic, however, the 

above method of estimating compressibility effects is no fur- 

ther advanced than von Karmän's (1929) approximation to the in- 

compressible flow solution. 

Borg (1959»I960) has considered wedge and cone impact with 

a somewhat different formulation.  In essence, the entering body 

is fitted with a shape of semicircular cross-section, which sug- 

gests a restriction on the deadrise angle to 45°•  A particularly 

simple assumption regarding the (purely radial) velocity field is 

found to be satisfied when the entry speed is c/2  in the wedge 

case and 2c/3 in the cone case.  Further approximations are 

made in an attempt to generalize the analysis to other body shapes 

and to account for the nonlinearities in the free-surface boun- 

dary conditions, but no very convincing results are obtained. 

Another, more plausible, formulation has been given re- 

cently by Rhyming (1963), who develops a slender-body theory for 

the entry of bodies oc.  revolution.  Thus, supersonic sources are 

distributed on the axis of motion, with their strength being 

antisymmetric about the undisturbed free surface.  The retarded- 

potential concept is used to writo the solutior as 
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0(x,r,t) -   *  f o(gft-[(x-|)
2 y^lVcJ. di      (100) 

where 

cr(x,t) «■ Ä- R2(x+h)    for x < 0 

- -o(-x,t)       for x > 0 (101) 

Curiously, no Mach number effects on the pressure distribution 

on a cone are found. 

References to recent Russian work en compressible entry 

are given by Wehausen (1963). 

3.4 Effects of Air Density 

Inclusion of compressibility effects is seen to remove 

some of the more glaring defectJ of the formulation of § 1.1.  The 

impact pressure is rendered finite, and, at least when the edge 

Mach number is supersonic, even the linearized solution is free 

of spurious singularities, and so seems a reliable approximation. 

Nevertheless, one should not regard water compressibility 

as a panacea for the difficulties of the conventional solution. 

To do so would be to claim that compressibility is important in 

the entry of any blunt- or round-nosed body, whatever the entry 

speed.  This does not seem physically plausible for very low 

entry speeds. 
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It is, therefore, of interest to note that the impact 

pressure predicted by incompressible-flow theory is finite if 

density of the air is taken into account (Moran & Kerney 1964). 

To see this, let us consider the changes required in the conven- 

tional formulation when the air density is finite, but the water 

is still regarded as incompressible. 

As noted in § 1.2, we must anticipate a discontinuity in 

the potential and its derivatives across the air-water interface. 

Thus, let 0  and 0~ be the potentials above and below the 

free surface, respectively, so that 

0=0      for x > A(r,t) 

0=0"     for x < A(r,t) (102) 

Similarly, let p  ancj p~ be the densities of the air and of 

the water, respectively, and let 

6   = p+/p" (103) 

Note that 6 « 1/800. 

Laplace's equation (4) still applies throughout the flow 

field, as does Bernoulli's equation (S).  Also, the body boundary 

condition (8) is unchanged.  However, since the pressure above 

the free surface is no longer necessarily constant, the dynamical 

free-surface boundary condition becomes, in the absence of gravity, 



104 

P+ [<*>* + i (V0+)2 = p~ <t>~  + | (V0')2    on x = A(r,t) 

(104) 

That is, the pressure is required to be continuous across the 

free surface.  The kinematical free-surface boundary condition (6) 

still holds, but we also require continuity of the velocity com- 

ponent normal to the free surface across that interface, or 

K  - K  Ar = *x " 0r Ar     on x = A(r,t) (105) 

It is this last requirement which is responsible for the 

removal of the singularity in the impact pressure found in the 

zero-air-density approximation.  Consider, for simplicity, the 

pre-impact phase of the vertical symmetric entry of a blunt-nosed 

body of revolution.  From the kinematic body and free-surface 

boundary conditions, we expect that the magnitude of the fluid 

velocity along the x-axis decreases monou.onically and continuous- 

ly from the entry speed U immediately below the body nose to 

zero infinitely far below the free surface.  Conversely, at a 

fixed distance along the x-axis from the air-water interface, 

|u(x,0,t)|  may be expected to increase continuously from 0 to 

U as that point is approached by the body's stagnation point. 

Then, at the moment of impact, the free surface at the impact 

point has already been accelerated to the body speed.  The in- 

clusion of air-density effects, therefore, eliminates the abrupt 

velocity change at impact which is clearly responsible for the 
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infinite impact pressure found in the conventional formulation. 

This is not to say that compressibility effeccs are al- 

ways negligible.  Certainly, if the body speed is high enough, 

such effects will be important.  Indeed, shock waves are observed 

when the entry speed is high enough (McMillen, et al, 1950). 

However, it is certain that the neglect of air density exaggerates 

the importance of compressibility, and that the assumption of in- 

compressibility is tenable when the entry speed is low enough. 

Since, according to an Incompressible-flow analysis, the fluid 

speeds are proportional to the entry speed, the results of such 

an analysis could be used to determine an upper limit on the en- 

try speed below which the phenomena could be treated as incom- 

pressible.  Consequently, in cases where the infinite impact 

pressure predicted by standard theory is unacceptable, but where 

the entry speed is quite small compared to the sound speed, it 

would seem advisable to relax the zero-air-density assumption be- 

fore worrying about the compressibility of water. 

Unfortunately, the air-density effects described above are 

important only during that phase of the motion in which non-lin- 

earities in the free-surface boundary condition - are least manage- 

able.  Thus far, it has been found necessary to make small-dis- 

turbance assumptions in order to obtain analytical results. Moran 

(1964a) has treated the linearized problem of the vertical con- 

stant-speed approach to the surface of a point source of constant 

strength at arbitrary Froude number, while Moran & Kerney (1964) 
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have solved the infinite-Froude-number vertical-exit and -entry- 

problems for slender bodies of revolution to second order in the 

body thickness ratio. While these analyses are thus not directly 

applicable to the impact-pressure problem which prompted us to 

look into air-density effects, they are pertinent to a numerical 

solution which could solve this problem, as will be discussed 

shortly.  Thus, for purposes of illustration, the linearized in- 

finite-Froude-number solution corresponding to the motion of a 

point source near the surface will be reproduced here. 

The linearization of the free-surface boundary conditions 

(104) and (105) proceeds exactly as described in § 2.1 for the 

zero-air-density case, and leads to the requirements 

0" = 6 0+    on x = 0 (106) 

0~ =  0+    on x = 0 (107) 

We let 

0 = 0S + 0V (108) 

where 0,  is the potential of the given source 
s 

^c  -  -TSTUX-XJ
2
 + r2Vh (109) s      " Wn 
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and 0  is to be determined so that 0 satisfies the free-sur- 

face boundary conditions and the boundary condition of no distur- 

bance at infinity.  Since 0  satisfies this last requirement by 

itself, we have 

0V - 0     as x2+zd -  * (110) 

Also,  0  must be regular throughout the fluid; it can be singu- 

lar only on the free surface. 

Equation (107) is automatically satisfied if we let 0 

be the potential of a vortex sheet on x = 0 , and so implies 

that 

0* = - 0~     on x = 0 (ill) 

From (106), (108), and (111), we obtain 

K =  ITS^S     on x = 0 U12) 

K = - i40s    on x = ° (113) 

These relations determine the strength of the vortex sheet on 

x = 0 directly.  However, we can also use them to express the 

solution more simply in terms of point singularities. 

Suppose, for example, that the given source is located 
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above the surface; i.e.,  x > 0 .  Then both 0  and 0  are 

free from singularities in x < 0 , and the function 

1-6 •P = 0  + , ± 
V   1+0 0. (114) 

satisfies Laplace's equation everywhere in the region bounded by 

the plane surface E = [x=0, r<ft)  and Z_, , the lower half of 

a sphere of radius ft and centered at (0,0)   .     Then, from Green's 

theorem, 

J  (Vq>)2 dT = J      q> |2.da (115) 
w V2H 

where W is the volume bounded by 2_  and STT , and n  is the P       H 

normal directed outward from the bounding surfaces.  Assuming that 

0~ is source-like far from the origin, as can be verified a 
v — 

posteriori, we see that the integral in (115) vanishes as ft ■*  « . 

Since, from (113) and (114),  <p - 0 on £  , equation (115) 

shows that cp is constant in W , viz., again from (113), zero. 

In other words, (113) can be continued off the plane 

x = 0 into the region below the surface, and we get 

*V= -Wr4° ((x-x0)
2 + r2)^ (116) 

Though this is singular at (x ,0), from the definition (102) 

0=0" only in the region below the surface, and so the require- 
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ment that 0  be regular off the plane x = 0 is not violated 

by (106). 

To complete the solution, we need 0 . From the symmetry 

of (111), and the requirement that 0 ba regular in x > C , we 

see that 

*V = 3nfl4° f(x+x0)
2 + r

2}-'5 (117) 

Thus, given a source of strength Q in the air, the flow above 

the free surface is due to the original source plus a submerged 

sink of strength - ](l-6)/(l+ö) Q at its image in the undisturbed 

surface, while the flow below is due to the original source plus 

one of strength  j (1-6)/(l+6)iQ which is coincident with the 
# 

original source. 

Now letting XQ = -h , we plug (108', (109), and (116) 

into the linearized kinematic boundary condition (26) and inte- 

grate to obtain the free-surface shape; 

'^^-^^(^rV5 (118) 

This result and those which preceded it are not valid when 

the source gets too close to the surface; certainly, they must 

This solution is highly reminiscent of that for the electrostatic 
problem in which a point charge is positioned near a plane discon- 
tinuity in the dielectric constant (Mason & Weaver). 
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break down when the image singularity hits the depressed free sur- 

face. From (118), the depression is proportional to 6 , and so 

may be estimated in the entry of a round-nosed body as being of 

the order of bl   , where I     is the nose radius of cu:/ature. 

Thus we estimate the duration of significant air-density effects as 

UT. 
~T = °(6) (119) 

For comparison, we estimate the duration of compressibility 

effects as the time required for the edge Mach number to become 

sonic, and so obtain 

' = O(UVc-) (120) 

These relations bear out our argument that air density effects 

are more significant than compressibility effects at lov entry 

speeds. 

Since, as noted above, the effects of air density are 

important only when they are least amenable to analytic attack, 

it is of interest to consider the formulation uf a numerical 

solution of the surface-crossing problem in which the air density 

An estimate similar to (120) was made by Chu (i960), who also 
concluded that the duration of significant compressibility ef- 
fects is negligible on the time scale of interest in ship 
slamming, for example. 
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is regarded as finite. We recommend that such a solution be 

carried out in terms of singularity distributions, in which both 

the body surface and the free water surface are covered with vor- 

tex sheets. This would automatically satisfy the Laplace equa- 

tion (and so would avoid the large consumption of time and ma- 

chine storage space which are characteristic of relaxation methods), 

the boundary condition at infinity, and the kinematic boundary 

condition of continuous normal velocity across the free surface. 

Also, use of vortices rather than sources or doublets on the body 

surface simplifies the body boundary condition; compare Smith & 

Pierce's (1958) use of source distributions with Landw^ber's (1951, 

1959) vortex-distribution solution. 

For numerical purposes, the free-surface anr' the body- 

surface profiles may be approximated by a contour composed of a 

specified number of connected straight-line segments, on each of 

which the vortex strength is taken to be constant.  Such an approxi- 

mation was found by smith & Pierce to be more than adequate in 

unbounded flow provided, of course, that a sufficient number of 

approximating elements are used.  The junctures of the segments 

representing the free surface ought to represent definite fluid 

particles, whose trajectories would be calculated from a finite- 

difference version of the kinematic free-surface boundary condi- 

tion.  The strengths of the vortices on the elements should then 

be calculated from a finite~difference version of the dynamical 

free-surface boundary condition.  Once theje are known, the inte- 
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gral equation corresponding to the body boundary condition can 

be approximated by a set of algebraic equations for the vortex 

strengths on each of the elements representing the body and solved, 

To improve the accuracy of the finite-difference approximation to 

the time derivatives in the free-surface boundary conditions, an 

iteration procedure based on forward and backward differencing 

could be set up. 

One of the more difficult problems in the numerical solu- 

tion would be the description, during the broach phase of the mo- 

tion, of the absorption of free-surface particles by the body 

surface.  Perhaps this can be done by concentrating the juncture 

points describing the surface shape near the axis of motion, and 

taking the time interval so that, at the end of the interval, the 

particle which had been adjacant to the particle at the contact 

point at the beginning of the interval moves to the juncture of 

the body and free surfaces (as suggested by Chu i960).  In this 

process a certain amount of freedom as to the disposition of the 

juncture points on the body surface is available — i.e., the 

contact point can be forced to be a point at which two of tht line 

segments representing the body profile meet, as is convenient -— 

since the body boundary condition does not involve time explicitly 

Similar prcblems occur, for example, towards the end of the 

broach phase of the entry problem, in which fluid particles on the 

body surface transfer to the free surface.  If the resolution of 

the "reemissinn" problem turns out to be more difficult than 



113 

that of the "absorption" problem, advantage can be taken of the 

reversibility of the flow (Moran & Kerney 1964) to work the pro- 

blem partly as a water-exit problem and partly as one of entry. 

Although errors in the spray region are probably unavoid- 

able, it may be noted that the exact boundary conditions require 

that the free-surface vortax strength vanish at the contact point, 

since the fluid velocity must be parallel to the body surface on 

both sides of the contact point and since the component of fluid 

velocity normal to the free surface is continuous through the con- 

tact point. Thus numerical errors in locating the contact point 

can be minimized if the vortex strength is specified as zero on 

the element of the free surface adjacent to the body surface, in 

any case, such errors are probably not too serious in so far as 

computing the body-surface pressure distribution is concerned, 

since the thinness of the spray demands that the pressure be 

nearly constant thru the spray, and hence the pressure on the por- 

tion of the body wetted by the spray is nearly zero. 

To start the solution at a time when the body is a finite 

distance from the surfrce, the linearized solution described 

above can be used.  Since a second-order solution is available 

(Moran & Kerney 1964), it is possible to check how close the 

body can approach the surface before the linearization of the free- 

surface boundary conditions loses validity (cf. § 2.6).  During 

the complete-submergence phase, this critical depth can be cal- 

culated without taking air density into account without signifi- 
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cant error (brt with considerable reduction in computation). As 

for the airborne phase, the distance between the body and the sur- 

face, above which the linearized results can be used, can be set 

equal to the aforementioned critical depth,  This would seem to 

be on the conservative side, and again would minimize the compu- 

tational effort required. 

Finally, we note that the free surface is only slightly 

disturbed far from the body even during broach.  Thus the free- 

surface boundary conditions for r sufficiently large ought to 

be satisfied by the linearized results even in a numerical solu- 

tion so  as to reduce the computation time and storage requirements 
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SUMMARY AND CONCLUSIONS 

It is seen from the preceding survey that, despite a 

substantial expenditure of effort, there exists no reliable 

means for predicting the loads felt during the surface 

crossing. This failure reflects the mathematical nature 

of the problem. Under standard assumptions, one must 

satisfy nonlinear boundary conditions on a surface whose 

shape is unknown a priori. Such difficulties can be avoided 

by linearization, which, however, leads to an unacceptably 

fictitious singlarity at the intersection of the body and 

the undisturbed position of the free surface. Other approxi- 

mations which have led to analytic solutions are also non- 

uniformly valid. 

Attempts to treat the problem numerically have met with 

little more success. The only solutions available refer to 

the conical-flow problems of wedge and cone entry, and of 

these all but Dorg's (1957) study of a single case contain 

serious errors. Treatment of arbitrarily shaped bodies 

offers even greater difficulties, the more so because the 

pressure felt at impact by a round-nosed body is theoretically 

infinite under the "conventional" set of assumptions. 

We nevertheless^ recommend that further effort be devoted 

to the development of numerical methods for solving water- 

exit and -entry problems. Specifically, for conical-flow 

problems, Hillman's (1946) apprcach ought to be corrected 

as explained in § 2.5.1 and programmed for a computer, so 
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that a set of reliable solutions for wedge and cone ent.ry 

could be obtained.  Such solutions would be of interest in 

themselves as well as serving as standards of comparison 

for more approximate analyses. 

The development of a computer code capable of handling 

non-conical problems offers greater difficulties, partly 

because the time dependence is more easily handled in conical 

situations, but mostly because of the impact singularity 

found in the surface crossing of blunt bodies under the con- 

ventional formulation. To eliminate this singularity, it 

is suggested in § 3.4 thait, except in high-speed entry, tie 

usual assumption of incompressible flow may be retained, but 

the finite density of the air should be tav  into account. 

Specific recommendations as to how this can be done are also 

detailed in § 3.4. 

To these recommendations on numerical solutions of 

surface-crossing problems we should add a plea that cavita- 

tion be taken into account. Unfortunately, it is difficult 

to see at present how this might be done satisfactorily.  On 

the other hand, since the problem in the absence of cavitation 

seems to require a numerical solution, there is no reason to 

believe that cavitating surface-crossing can be adequately 

handled analytically. Thus the carrying out of the present 

recommendations may well be a necessary first step towards 

the development of a theory of water-exit and -entry in 

which cavitation is accounted for numerically. 
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